The answer is 7
because the equation is |(3)(-2)-1|
The equations to calculate the legs are 0.5(x)(x + 2) = 24, x^2 + 2x - 48 = 0 and x^2 + (x + 2)^2 = 100
<h3>How to determine the legs of the triangle?</h3>
The complete question is in the attached image
The given parameters are:
Area = 24
Legs = x and x + 2
The area of the triangle is calculated as:
Area = 0.5 * Base * Height
This gives
0.5 * x * (x + 2) = 24
So, we have:
0.5(x)(x + 2) = 24
Divide through by 0.5
(x)(x + 2) = 48
Expand
x^2 + 2x = 48
Subtract 48 from both side
x^2 + 2x - 48 = 0
Hence, the equations to calculate the legs are 0.5(x)(x + 2) = 24, x^2 + 2x - 48 = 0 and x^2 + (x + 2)^2 = 100
Read more about area at:
brainly.com/question/24487155
#SPJ1
Answer:
B
Step-by-step explanation:
Givens
a^2 + b^2 = c^2
a = 4x
b = x + 2
c = 3x + 4
Solution
(4x)^2 + (x + 2)^2 = (3x + 4)^3 Remove all the brackets.
16x^2 + x^2 + 4x + 4 = 9x^2 + 24x + 16 Collect like terms on the left
17x^2 + 4x + 4 = 9x^2 + 24x + 16 Subtract the terms on the right
8x^2 - 20x - 12 = 0
This factors into
(4x - 12)(2x + 1)
There are 2 answers
4x - 12 = 0
4x = 12
x = 12/4
x = 3
or
2x + 1 = 0
2x = - 1
x = - 1/2
You have to look at x = -1/2 carefully. The problem is that 4x = 4*(-1/2) = - 2 which is not possible in Euclidean Geometry.
So the only answer is x = 3
Answer:
35cm
Step-by-step explanation:
The net of a regular pentagon has 10 sides.
Since each of the faces are equilateral triangles, the side lengths are equal.
Therefore:
Length of each side of the net = 70/10 =7cm
Therefore, the base is a regular pentagon of side length 7cm.
The perimeter of the base of the pyramid = 5 X 7
=35cm
The perimeter of the base of the pyramid is 35cm.
Answer:
surface area is 216 and the volume is 216