Check out the attached image.
Figure 1 moves to figure 2 after the translation rule (x,y) ---> (x+1, y+2)
Figure 2 moves to figure 3 after the rotation 90 degrees clockwise around the origin
Figure 3 moves to figure 4 after the translation rule (x,y) ---> (x+2, y-3)
Figure 4 is in quadrant IV. The size does not change
-----------------------------------------------
Answer: Choice B) Quadrant IV; no
Answer:
∠2=92°
Step-by-step explanation:
Using an angle formula, -8x+144=2x+74
Simplification:
-8x+144=2x+74
-8x+70=2x
70=10x
x=7
Therefore, each angle is 88°
Now, because ∠2 is adjacent to one of 88°, they add up to 180°
Therefore,
180°=88°+∠2
∠2=92°
1 Convert 12\frac{2}{3}12
3
2
to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
=
c
ac+b
\frac{12\times 3+2}{3}\times 3\frac{1}{4}
3
12×3+2
×3
4
1
2 Simplify 12\times 312×3 to 3636
\frac{36+2}{3}\times 3\frac{1}{4}
3
36+2
×3
4
1
3 Simplify 36+236+2 to 3838
\frac{38}{3}\times 3\frac{1}{4}
3
38
×3
4
1
4 Convert 3\frac{1}{4}3
4
1
to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a
c
b
=
c
ac+b
\frac{38}{3}\times \frac{3\times 4+1}{4}
3
38
×
4
3×4+1
5 Simplify 3\times 43×4 to 1212
\frac{38}{3}\times \frac{12+1}{4}
3
38
×
4
12+1
6 Simplify 12+112+1 to 1313
\frac{38}{3}\times \frac{13}{4}
3
38
×
4
13
7 Use this rule: \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
\frac{38\times 13}{3\times 4}
3×4
38×13
8 Simplify 38\times 1338×13 to 494494
\frac{494}{3\times 4}
3×4
494
9 Simplify 3\times 43×4 to 1212
\frac{494}{12}
12
494
10 Simplify
\frac{247}{6}
6
247
11 Convert to mixed fraction
41\frac{1}{6}41
6
1
41 and 1/6
one term is monomial
two terms are binomials
three terms are trinomials
each term is separated by a + or - sign
so......6 has only one term ......it is a monomial