Answer: No, triangle ABC is not similar to triangle FED
Step-by-step explanation:
Here, m∠A = 70°, m∠B = x, m∠C = x+2°
But, m∠A + m∠B + m∠C =180° ( By the property of a triangle)
⇒ 70+ x + x + 2 = 180
⇒ 2x + 72 = 180
⇒ 2x = 180 - 72
⇒ 2x = 108
⇒ x = 54
Thus, m∠A = 70°, m∠B = 54°, m∠C = 56°
Now In triangle FED, m∠D=y, m∠E=y+5°, and m∠F=y+25°.
But, m∠D + m∠E + m∠F = 180°
⇒ y + y + 5 + y + 25 = 180
⇒ 3y + 30 = 180
⇒ 3y = 150
⇒ y = 50
Thus, m∠D = 50°, m∠E = 55°, and m∠F = 75°
Also, m∠A ≠ m∠F, m∠B ≠ m∠E and m∠C ≠ m∠D
Thus, By the property of similarity,
Δ ABC and Δ FED are not similar.