Answer:
At least 75% of healthy adults have body temperatures within 2 standard deviations of 98.28degreesF.
The minimum possible body temperature that is within 2 standard deviation of the mean is 97.02F and the maximum possible body temperature that is within 2 standard deviations of the mean is 99.54F.
Step-by-step explanation:
Chebyshev's theorem states that, for a normally distributed(bell-shaped )variable:
75% of the measures are within 2 standard deviations of the mean
89% of the measures are within 3 standard deviations of the mean.
Using Chebyshev's theorem, what do we know about the percentage of healthy adults with body temperatures that are within 2 standard deviations of the mean?
At least 75% of healthy adults have body temperatures within 2 standard deviations of 98.28degreesF.
Range:
Mean: 98.28
Standard deviation: 0.63
Minimum = 98.28 - 2*0.63 = 97.02F
Maximum = 98.28 + 2*0.63 = 99.54F
The minimum possible body temperature that is within 2 standard deviation of the mean is 97.02F and the maximum possible body temperature that is within 2 standard deviations of the mean is 99.54F.