1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
3 years ago
12

Plz help me number 4 thanks

Mathematics
1 answer:
Tcecarenko [31]3 years ago
4 0

They \:  would \:  be  - 10°F,  - 13°F, - 21°F

You might be interested in
un grupo de 247 personas viajan en camionetas del zoológico.el mayor numero de personas que pueden viaja es 15 cuel es el menor
Cloud [144]

Answer: 17

Step-by-step explanation:

:)

4 0
3 years ago
Steven has 24 t-shirts. One third of the t-shirts are white, one fourth of the t-shirts are blue ; the remainder of the t-shirts
Black_prince [1.1K]
White t-shirts = 8, blue t-shirts =6 6+8=14 24-14=10 orange tshirts
8 0
3 years ago
Write y=-3(x-7)^2-8 in vertex form
Veronika [31]

It's in the verex form:

f(x)+a(x-h)^2+k\\\\(h,\ k)-vertex

y=-3(x-7)^2-8\\\\(7,\ -8)-vertex

7 0
3 years ago
Read 2 more answers
Need help pleaseee on
dem82 [27]

Answer:

for the first one the answer is D :)

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
If 13cos theta -5=0 find sin theta +cos theta / sin theta -cos theta​
Ivahew [28]

Step-by-step explanation:

<h3>Need to FinD :</h3>

  • We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

\red{\frak{Given}} \begin{cases} & \sf {13\ cos \theta\ -\ 5\ =\ 0\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \big\lgroup Can\ also\ be\ written\ as \big\rgroup} \\ & \sf {cos \theta\ =\ {\footnotesize{\dfrac{5}{13}}}} \end{cases}

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.

Where,

  • PQ = Opposite side
  • QR = Adjacent side
  • RP = Hypotenuse
  • ∠Q = 90°
  • ∠C = θ

As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

\rightarrow {\underline{\boxed{\red{\sf{cos \theta\ =\ \dfrac{Adjacent\ side}{Hypotenuse}}}}}}

Since, we know that,

  • cosθ = 5/13
  • QR (Adjacent side) = 5
  • RP (Hypotenuse) = 13

So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.

Therefore,

\red \bigstar {\underline{\underline{\pmb{\sf{According\ to\ Question:-}}}}}

\rule{200}{3}

\sf \dashrightarrow {(PQ)^2\ +\ (QR)^2\ =\ (RP)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ (5)^2\ =\ (13)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ 25\ =\ 169} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 169\ -\ 25} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 144} \\ \\ \\ \sf \dashrightarrow {PQ\ =\ \sqrt{144}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{PQ\ (Opposite\ side)\ =\ 12}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

\rightarrow {\underline{\boxed{\red{\sf{sin \theta\ =\ \dfrac{Opposite\ side}{Hypotenuse}}}}}}

Where,

  • Opposite side = 12
  • Hypotenuse = 13

Therefore,

\sf \rightarrow {sin \theta\ =\ \dfrac{12}{13}}

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

\rightarrow {\underline{\boxed{\red{\sf{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}}}}}}

  • By substituting the values, we get,

\rule{200}{3}

\sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\Big( \dfrac{12}{13}\ +\ \dfrac{5}{13} \Big)}{\Big( \dfrac{12}{13}\ -\ \dfrac{5}{13} \Big)}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{13} \times \dfrac{13}{7}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{\cancel{13}} \times \dfrac{\cancel{13}}{7}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{7}}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the required answer is 17/7.

6 0
3 years ago
Other questions:
  • organizer for a local race plan to provide 4 water bottles for eah runner. 328 people have signed up to run in the race which of
    6·1 answer
  • What equals 75 using the numbers 3 4 5 6 7
    15·2 answers
  • What are the x- and y-intercepts for the graph of 3x + y = 15?
    7·1 answer
  • Find the distance between the points given. (-10,3) and (-10,12)
    6·1 answer
  • A researcher divided subjects into two groups according to gender and then selected members from each group for her sample. What
    15·1 answer
  • A student works no more than 25 hours each week at a part-time job. Write an inequality that represents how many hours the stude
    9·1 answer
  • Convert the following recipe ingredients from customary units to metric
    10·1 answer
  • Convert 59°F to Celsius, using the formula C = (F - 32). 1°C 15°C 49°C 51°C
    14·1 answer
  • What is the value of x in the rational equation 36/55 = 3x/28 ?
    10·1 answer
  • These figures are similar. The area of one is given. Find the area of the other.3 inarea=24 in6 in[ ? Jin2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!