1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
4 years ago
12

{PLEASE HELP ME!!!!!!!!!!!!!

Mathematics
1 answer:
malfutka [58]4 years ago
5 0

Answer:

2

Step-by-step explanation:

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "2.8" was replaced by "(28/10)". 2 more similar replacement(s)

Step by step solution :

Step  1  :

           14

Simplify   ——

           5  

Equation at the end of step  1  :

   5  1    1   7    14

 (——+——) ÷ —)-——) ÷ ——

  10 18    6  18    5  

Step  2  :

            7

Simplify   ——

           18

Equation at the end of step  2  :

   5  1    1   7    14

 (——+——) ÷ —)-——) ÷ ——

  10 18    6  18    5  

Step  3  :

           1

Simplify   —

           6

Equation at the end of step  3  :

   5  1    1   7    14

 (——+——) ÷ —)-——) ÷ ——

  10 18    6  18    5  

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  6  as the denominator :

         1     1 • 6

    1 =  —  =  —————

         1       6  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

6 + 1     7

—————  =  —

  6       6

Equation at the end of step  4  :

   5  1    7  7    14

 (——+——) ÷ —-——) ÷ ——

  10 18    6 18    5  

Step  5  :

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       6  

     The right denominator is :       18  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

3 1 2 2

Product of all  

Prime Factors  6 18 18

     Least Common Multiple:

     18  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      7 • 3

  ——————————————————  =   —————

        L.C.M              18  

  R. Mult. • R. Num.       7

  ——————————————————  =   ——

        L.C.M             18

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

7 • 3 - (7)     7

———————————  =  —

    18          9

Equation at the end of step  5  :

   5     1    7   14

 (—— +  ——) ÷ — ÷ ——

  10    18    9   5  

Step  6  :

        7      14

Divide  —  by  ——

        9      5  

6.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

7     14       7      5

—  ÷  ——   =   —  •  ——

9     5        9     14

Equation at the end of step  6  :

   5     1     5

 (—— +  ——) ÷ ——

  10    18    18

Step  7  :

            1

Simplify   ——

           18

Equation at the end of step  7  :

   5     1     5

 (—— +  ——) ÷ ——

  10    18    18

Step  8  :

           1

Simplify   —

           2

Equation at the end of step  8  :

  1     1     5

 (— +  ——) ÷ ——

  2    18    18

Step  9  :

Calculating the Least Common Multiple :

9.1    Find the Least Common Multiple

     The left denominator is :       2  

     The right denominator is :       18  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

3 0 2 2

Product of all  

Prime Factors  2 18 18

     Least Common Multiple:

     18  

Calculating Multipliers :

9.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 9

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

9.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.       9

  ——————————————————  =   ——

        L.C.M             18

  R. Mult. • R. Num.       1

  ——————————————————  =   ——

        L.C.M             18

Adding fractions that have a common denominator :

9.4       Adding up the two equivalent fractions

9 + 1     5

—————  =  —

 18       9

Equation at the end of step  9  :

 5    5

 — ÷ ——

 9   18

Step  10  :

        5       5

Divide  —  by  ——

        9      18

10.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

5      5       5     18

—  ÷  ——   =   —  •  ——

9     18       9     5  

Final result :

 2

Processing ends successfully

You might be interested in
For parallelogram ABCD, A(0, 0), B(a, b), and D(c, 0) are three of its vertices. Find the coordinates of C in terms of a, b, c.
DanielleElmas [232]
I believe the answer is (a+c, b) but I'd double check to make sure.
8 0
3 years ago
Read 2 more answers
Each face of a small cube has a surface area of 0.25 square meters. A larger cube has edges that are six times as long as the ed
Natalija [7]

Answer:

1534

Step-by-step explanation:

34 35 baby you might need a seatbelet

4 0
3 years ago
What times 25 equals 13107200?
leva [86]

Answer:

524,288

Step-by-step explanation:

3 0
3 years ago
Find the area. Round to the nearest hundredth if necessary
snow_lady [41]

Answer:

138.16

Step-by-step explanation:

a=3.14 x 44

the formula is a=pie x r squared

they have given you diameter so, it is simply pie x diameter

or 3.14 x 44

4 0
3 years ago
Pls tell me the rest of the angles. Angle 1 is 112.9 degrees
Annette [7]

1. 112.9

2. 67.1

3. 112.9

4. 67.1

hope that helped^^

6 0
3 years ago
Other questions:
  • I have the answer but I have to show work help?
    7·1 answer
  • Eighteen is fifteen less than the product of a number and three .Find the number
    12·1 answer
  • What's the answer for the 2nd question?
    14·2 answers
  • Solve.
    7·1 answer
  • Assume that the breaking system of a train consists of two components connected in series with both of them following Weibull di
    14·1 answer
  • Please help me thanks
    15·1 answer
  • . The product of 3V5 and 6v5 is
    15·1 answer
  • What are the coordinates of point P? On a coordinate plane, Point P is 2 units to the left and 4.5 units down. (Negative 4.5, ne
    10·1 answer
  • Let f (x) = x4 – 2x3 – 3x2 + 4x + 4, g of x is equal to the square root of the quantity x squared minus x minus 2 end quantity a
    13·1 answer
  • 7.6.7. Homer began peeling a pile of 44 potatoes at the rate of 3 potatoes per minute. Four minutes later, Christen joined him a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!