Answer:
Step-by-step explanation:
Let's simplify step-by-step.
2x−y
There are no like terms.
Answer:
=2x−y
Answer:
=========
<h2>Given</h2>
<h3>Line 1</h3>
<h3>Line 2</h3>
- Passing through the points (4, 3) and (5, - 3)
<h2>To find</h2>
- The value of k, if the lines are perpendicular
<h2>Solution</h2>
We know the perpendicular lines have opposite reciprocal slopes, that is the product of their slopes is - 1.
Find the slope of line 1 by converting the equation into slope-intercept from standard form:
<u><em>Info:</em></u>
- <em>standard form is ⇒ ax + by + c = 0, </em>
- <em>slope - intercept form is ⇒ y = mx + b, where m is the slope</em>
- 3x - ky + 7 = 0
- ky = 3x + 7
- y = (3/k)x + 7/k
Its slope is 3/k.
Find the slope of line 2, using the slope formula:
- m = (y₂ - y₁)/(x₂ - x₁) = (-3 - 3)/(5 - 4) = - 6/1 = - 6
We have both the slopes now. Find their product:
- (3/k)*(- 6) = - 1
- - 18/k = - 1
- k = 18
So when k is 18, the lines are perpendicular.
Answer:
6.5 x 10^-7
Step-by-step explanation:
Answer:
0.772
Step-by-step explanation:
0.24+ 0.532 =
Line up the decimals
0.24
+ 0.532
------------
0.772
Here i how I would do it:<span>f(x)=−<span>x2</span>+8x+15</span>
set f(x) = 0 to find the points at which the graph crosses the x-axis. So<span>−<span>x2</span>+8x+15=0</span>
multiply through by -1<span><span>x2</span>−8x−15=0</span>
<span>(x−4<span>)2</span>−31=0</span>
<span>x=4±<span>31<span>−−</span>√</span></span>
So these are the points at which the graph crosses the x-axis. To find the point where it crosses the y-axis, set x=0 in your original equation to get 15. Now because of the negative on the x^2, your graph will be an upside down parabola, going through<span>(0,15),(4−<span>31<span>−−</span>√</span>,0)and(4+<span>31<span>−−</span>√</span>,0)</span>
To find the coordinates of the maximum (it is maximum) of the graph, you take a look at the completed square method above. Since we multiplied through by -1, we need to multiply through by it again to get:<span>f(x)=31−(x−4<span>)2</span></span><span>
Now this is maximal when x=4, because x=4 causes -(x-4)^2 to vanish. So the coordinates of the maximum are (4,y). To find the y, simply substitute x=4 into the equation f(x) to give y = 31. So it agrees with the mighty Satellite: (4,31) is the vertex.</span>