Answer:
Glucose
Explanation:
The brain is an energy-hungry organ. Despite comprising only 2 percent of the body’s weight, the brain gobbles up more than 20 percent of daily energy intake. Because the brain demands such high amounts of energy, the foods we consume greatly affect brain function, including everything from learning and memory to emotions.
Just like other cells in the body, brain cells use a form of sugar called glucose to fuel cellular activities. This energy comes from the foods we consume daily and is regularly delivered to brain cells (called neurons) through the blood.
Studies suggest the quality of the foods consumed over a lifetime affects the structure and function of the brain. For instance, the consumption of omega-3 fatty acids found in fish provides structural material to maintain neurons. Studies also suggest omega-3 fatty acids are essential for the transmission of information between brain cells. In contrast, foods that are rich in sugars and saturated fats have been found to promote oxidative stress, which leads to damage to cell membranes.
The food you eat also affects molecules in the brain that support cognition. Some foods, such as those with turmeric, support cognition by helping to maintain molecular events related to energy metabolism.
Recent studies suggest lifestyle choices that affect the metabolism of nerve cells, such as diet and exercise, may in some cases provide a non-invasive and effective strategy to counteract neurological and cognitive disorders.
Resulting factors are called Second-order factors
<h3>
What is factor analysis?</h3>
- Factor analysis is a statistical approach for describing variability in seen, correlated variables in terms of a possibly smaller number of unobserved variables known as factors.
- It is possible, for example, that fluctuations in six known variables mostly reflect variations in two unseen (underlying) variables.
- Factor analysis looks for such joint fluctuations in response to latent variables that are not noticed.
- Factor analysis may be regarded of as a specific form of errors-in-variables models since the observed variables are described as linear combinations of the possible factors plus "error" terms.
- It may help to deal with data sets where there are large numbers of observed variables that are thought to reflect a smaller number of underlying/latent variables.
- It is one of the most commonly used inter-dependency techniques and is used when the relevant set of variables shows a systematic inter-dependence and the objective is to find out the latent factors that create a commonality.
To Learn more about factor analysis from the given link
brainly.com/question/26561565
#SPJ4
Answer:
The test statistic for this hypothesis test is - 3.68.
Explanation:
A test statistic is a random variable that is calculated from sample data and used in a hypothesis test. You can use test statistics to determine whether to reject the null hypothesis. The test statistic compares your data with what is expected under the null hypothesis.
Sample proportion = 38/50
= 0.76
Hence,
Test statistic

= 3.68
A cell is analogous to an engineered watch because it consists of numerous interdependent sub units and also because coded information can not arise from random processes. A cell is the basic unit of living systems. Although it is relatively easy to visualize the components of cells, it is difficult to conceptualize how these components function together to sustain life within the cell.