1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
4 years ago
7

Cary is 4 4 years older than dan. in 9 9 years the sum of their ages will be 78 78. find the age of each man now.

Mathematics
1 answer:
Gnoma [55]4 years ago
8 0
????? what she 44 or 4 i confused
You might be interested in
Need help i don't know what im doing?​
AveGali [126]

Answer:

X=5

Step-by-step explanation:

f(1)= -1^2+4(1)+12=15

f(2)= -2^2+4(2)+12=16

f(3)= -3^2+4(3)+12=15

f(4)= -4^2+4(4)+12=12

f(5)= -5^2+4(5)+12=7

g(1)=1+2=3

g(2)=2+2=4

g(3)=3+2=5

g(4)=4+2=6

g(5)=5+2=7

so g(5)=f(5)= X=5

3 0
2 years ago
Read 2 more answers
Answer this. It's the area of a trapezoid
Lelechka [254]
((b1+b2)÷2)(h)=A
so I think the answer is 3 1/16 or 3.0625
6 0
4 years ago
X and y are normal random variables with e(x) = 2, v(x) = 5, e(y) = 6, v(y) = 8 and cov(x,y)=2. determine the following: e(3x 2y
andriy [413]

The result for the given normal random variables are as follows;

a. E(3X + 2Y) = 18

b. V(3X + 2Y) = 77

c. P(3X + 2Y < 18) = 0.5

d. P(3X + 2Y < 28) = 0.8729

<h3>What is normal random variables?</h3>

Any normally distributed random variable having mean = 0 and standard deviation = 1 is referred to as a standard normal random variable. The letter Z will always be used to represent it.

Now, according to the question;

The given normal random variables are;

E(X) = 2, V(X) = 5, E(Y) = 6, and V(Y) = 8.

Part a.

Consider E(3X + 2Y)

\begin{aligned}E(3 X+2 Y) &=3 E(X)+2 E(Y) \\&=(3) (2)+(2)(6 )\\&=18\end{aligned}

Part b.

Consider V(3X + 2Y)

\begin{aligned}V(3 X+2 Y) &=3^{2} V(X)+2^{2} V(Y) \\&=(9)(5)+(4)(8) \\&=77\end{aligned}

Part c.

Consider P(3X + 2Y < 18)

A normal random variable is also linear combination of two independent normal random variables.

3 X+2 Y \sim N(18,77)

Thus,

P(3 X+2 Y < 18)=0.5

Part d.

Consider P(3X + 2Y < 28)

Z=\frac{(3 X+2 Y-18)}{\sqrt{77}}

\begin{aligned} P(3X + 2Y < 28)&=P\left(\frac{3 X+2 Y-18}{\sqrt{77}} < \frac{28-18}{\sqrt{77}}\right) \\&=P(Z < 1.14) \\&=0.8729\end{aligned}

Therefore, the values for the given normal random variables are found.

To know more about the normal random variables, here

brainly.com/question/23836881

#SPJ4

The correct question is-

X and Y are independent, normal random variables with E(X) = 2, V(X) = 5, E(Y) = 6, and V(Y) = 8. Determine the following:

a. E(3X + 2Y)

b. V(3X + 2Y)

c. P(3X + 2Y < 18)

d. P(3X + 2Y < 28)

8 0
2 years ago
Ayuda porfa, es urgente
storchak [24]

Answer:

Media: 167.88 cm

Mediana:  167.6 cm

Modo: 166.67 cm

Step-by-step explanation:

Hola!

La variable de interés es:

X: estatura de un alumno de noveno año de educación básica.

<u>1)</u>

Primero debes ordenar los datos de menor a mayor y contar cuantos de ellos corresponden dentro de cada intervalo determinado, por ejemplo, el primer intervalo es:

[160;164)

Los intervalos están definidos con el límite inferior cerrado, es decir que incluye el valor de dicho límite, y el límite inferior abierto, es decir, que ese valor no está incluido en el intervalo.

160,160,160,161,162,163,164,165,165,165,165,166,167,167,167,167,168,168,168,169,170, 170, 170,171,173,173,173,175,175,176.

f(1)= 6 (seis valores de estatura corresponden a este intervalo)

La sumatoria de todas las frecuencias absolutas debe dar por resultado el total de observaciones n= 30

Para el segundo intervalo [164;168)

f(2)= 10

<u>2)</u>

hi representa la frecuencia relativa simple y esta se calcula como fi/n

Por ejemplo para el primer intervalo:

h(1)= f(1)/n= 6/30= 0.20

Esta indica la proporción de que las alturas estén entre 160 y 164 cm.

En porcentaje se expresa como hi*100, para el primer intervalo: 0.20*100)= 20%

Para el segundo intervalo h(2)= f(2)/n= 10/30= 0.33 y su porcentaje es 33%

Como indican la proporción de cada categoría de la distribución, la sumatoria de las frecuencias relativas simples de todas las categorías debe ser 1.

<u>3)</u>

Como lo dice su nombre, esta frecuencia es acumulada y se calcula como la sumatoria de las frecuencias absolutas simples, para el primer intervalo, dado que previo a él no hay "nada" es igual a la frecuencia absoluta simple:

F(1)= f(1)

Para el segundo intervalo, es la frecuencia absoluta simple del primer intervalo más la frecuencia relativa simple del segundo intervalo:

F(2)= f(1) + f(2)= 6 + 10= 16

<u>4)</u>

Esta frecuencia también representa la sumatoria de las frecuencias relativas simples.

H(1)= h(1)= 0.20 como previo al primer intervalo no existe distribución definida, la frecuencia relativa acumulada es igual a la frecuencia relativa simple.

Para el segundo intervalo la frecuencia relativa acumulada es:

H(2)= h(1)+h(2)?= 0.20+0.33= 0.57

Adjunta a la respuesta encontrarás la tabla completa.

5)

Como no específica medidas de tendencia central requeridas, voy a calcular la media, mediana y modo utilizando la tabla.

<u>Media</u>

X[barra]= (∑x'fi)/n= ∑x'*hi

Dónde x' representa la marca de clase de cada intervalo. Para calcular la marca de clase de los intervalos debes realizar un promedio entre sus límites y su valor siempre debe encontrarse dentro de los límites del intervalo. Si no es así, has cometido un error de cálculos:

(Limite inferior + Limite superior)/2

1. [160;164)  x₁'= (160+164)/2= 162

2. [164;168)  x₂'= 166

3. [168;172)  x₃'= 170

4. [172;176)  x₄'= 174

Una vez que calculaste las marcas de clase, puedes calcular la media:

X[barra]= ∑x'*hi= (162*0.20)+(166*0.33)+(170*0.27)+(174*0.20)= 167.88 cm

<u>Mediana:</u>

La mediana es el valor de la variable que divide a la muestra en dos (50%-50%).

Para poder calcularla primero debes identificar su posición, en este tipo de presentación, debes identificar el intervalo en el que se encuentra incluida la mediana.

Para muestras pares, la posición de la mediana se calcula como:

PosMe= n/2= 30/2= 15

Esto significa que la mediana corresponde a la 15va observación de la muestra, observando la columna de las frecuencias absolutas (simples o acumuladas) debes identificar cual es el intervalo de la mediana:

Al segundo intervalo se corresponde una frecuencia acumulada de 16, lo que significa que la posición de la mediana está incluida en este intervalo:

[164;168)

Entonces puedes calcular la mediana como:

Me= Li + c [\frac{PosMe-F_{(i-1)}}{f_i} ]

Dónde

Li: es el límite inferior del intervalo de mediana.

c: es la amplitud del intervalo

F₍i₋₁₎: frecuencia absoluta acumulada del intervalo anterior al intervalo mediana

fi: frecuencia absoluta del intervalo mediana

Me= 164 + 4 [\frac{15-6}{10} ]= 167.6

Me= 167.6 cm, como puedes notar, el valor de la mediana se encuentra entre los límites del intervalo.

<u>Modo o Moda:</u>

El modo o la moda de una distribución corresponde al valor más observado, es decir, al valor con mayor frecuencia absoluta simple. Al igual que la media, para calcular el modo primero debes identificar el intervalo que lo contiene. En este caso, el intervalo modal será aquel con la mayor frecuencia absoluta simple.

[164;168)

La fórmula para calcular el modo es:

Md= Li + c[\frac{(f_{max}-f_{ant})}{(f_{max}-f_{ant})+(f_{max}-f_{post})} ]

Li: es el límite inferior del intervalo modal

c: es la amplitud del intervalo

f_{max}: es la frecuencia absoluta simple del intervalo modal.

f_{ant}: es la frecuencia absoluta simple del intervalo anterior al intervalo modal.

f_{post}: es la frecuencia absoluta simple del intervalo posterior al intervalo modal.

Md= 164 + 4[\frac{10-6)}{(10-6)+(10-8)} ]= 164+4[\frac{4}{4+2} ]= 166.67

Md= 166.67 cm

¡Espero que tengas un buen día!

4 0
4 years ago
Question 19: Please help. What is the equation of the line, in slope-intercept form, that is perpendicular to the line with the
alukav5142 [94]

Answer:

the first optionnnnnnn

7 1
3 years ago
Read 2 more answers
Other questions:
  • How many times does 54 go into 186?
    12·1 answer
  • SOMEONE PLEASE HELP ME I WILLG IVE EVERYTHING!
    12·1 answer
  • Find a so that the point (-1, 2) is on the graph of f(x)=ax^2+5.
    7·1 answer
  • Which expression is equivalent to 1/27
    5·1 answer
  • Use the method of completing the square to transform the quadratic equation into the equation form (x + p)2 = q.
    6·2 answers
  • Find the Lowest Score bounding upper 5%. The mean is 35 and the SD is 7
    10·1 answer
  • I really need help with this dividend thing. Plz help ASAP
    15·1 answer
  • A skateboard ramp has a slope of 4/9. What is the measure of the angle the ramp forms with the ground
    10·1 answer
  • Please solve asap thanks ​
    8·2 answers
  • If the angles of a triangle are in the ratio 2:3:5,find them <br>​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!