1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rashid [163]
3 years ago
7

The answer in decimal

Mathematics
1 answer:
ivolga24 [154]3 years ago
8 0
Apply the common log function to both sides of this equation to solve it:

x log 10 = (x+3) log 5  = x log 5 + 3 log 5

Group the x terms together on the left:   x (log 10 - log 5) = 3 log 5

Simplify the quantity inside the parentheses:  log 10 - log 5 = log 10/5 = log 2.

Then x log 2 = 3 log 5.  Solving for x:  (3 log 5) / (log 2)    (answer)
You might be interested in
Triangle Abc is similar to triangle xyz.calculate the length of side yz
seropon [69]
All we can determine from the information that you have given us is that 

yz should be proportionally related to bc, because their triangles are similar.

4 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
Somebody Please help Me
Firdavs [7]
19. -x-2 = 2/3x + 3
5/3 x + 3 = -2
5/3x = -5
x = -3

20. none are correct, you can double check me by plugging in the x and y values in the coordanates into the first problem none of them worked out in the first equasion so no need to test the second

21. -3 is the answer, capable of being done by using desmos 
4 0
3 years ago
$2.25
DiKsa [7]
2.50 that is the answer

8 0
3 years ago
2(4+2x)≥5x+5 solve inequality
valkas [14]

Answer:

x ≤ 3

Step-by-step explanation:

2(4+2x)≥5x+5

8+4x≥5x+5

4x-5x≥5-8

-x≥-3

x ≤ 3

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of "x" for each equation? Also, please provide your process in how you solved this.
    15·1 answer
  • You want your friend to go a movie with you tonight. She has $8.00 to spend. The movie cost $6.50, a large box of popcorn is $4.
    10·1 answer
  • Use the set of clues in the equations below to find the value of each variable .
    15·1 answer
  • Write how you would use numbers to investigate each object
    14·1 answer
  • I thought the volume of a cone is (1/3) times 3.14 times height?
    12·1 answer
  • Help quick
    11·1 answer
  • How do I Graph y=x−2
    6·1 answer
  • Which mathematical concepts did Euler’s legacy include? Check all that apply
    5·1 answer
  • Solve the equation.<br> -5r-1=7r+5
    8·2 answers
  • Write an equation in slope-intercept form for the line that has a slope of -4/5 and passes through (0, 7).
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!