The above figure can be formed into a cube.
This is for any polyhedron that does not intersect itself. The Euler's formula states that the number of faces plus the number of vertices or corner points less the number of edges is always equal to 2.
Faces + Vertices - Edges = 2
A cube has 6 faces, 8 vertices, and 12 edges.
Euler's formula: 6 + 8 - 12 = 2 ⇒ 14 - 12 = 2 ⇒ 2 = 2
Answer:
sin²2θ. (cos θ sin θ). cos 2θ
Step-by-step explanation:
finding g'(x)
g'(x)
= 4 (cosθsinθ)³ . { cosθ. (sinθ)' + sinθ. (cosθ)' }
- (cosθ)' = - sinθ
- (sinθ)' = cosθ
= 4 (cosθsinθ)³ { cosθ. cos θ + sinθ.(-sin θ)}
= 4 (cosθsinθ)³{ cos²θ - sin²θ}
- cos²θ - sin²θ = cos 2θ
- 2sinθ cosθ = sin 2θ
= (4 cosθ sinθ)². (cosθ sinθ). { cos²θ - sin²θ}
= <u>sin²2θ. (cos θ sin θ). cos 2θ</u>