Answer:
A.
Step-by-step explanation:
Answer:
Triangle APB is an isosceles triangle ⇒ 3rd answer
Step-by-step explanation:
* Lets explain the how to solve the problem
- ABCD is a square
∴ AB = BC = CD = AD
∴ m∠A = m∠∠B = m∠C = m∠D = 90°
- DPC is equilateral triangle
∴ DP = PC = DC
∴ m∠DPC = m∠PCD = m∠CDP = 60°
- In the Δs APD , BPC
∵ AD = BC ⇒ sides of the square
∵ PD = PC ⇒ sides of equilateral triangle
∵ m∠ADB = m∠BCP = 30° (90° - 60° = 30) ⇒ including angles
∴ Δs APD , BPC are congregant ⇒ SAS
- From congruent
∴ AP = BP
∴ Triangle APB is an isosceles triangle
Answer:
5⁄18 < x
Step-by-step explanation:
Start by adding like-terms [⅓ and 2⁄9] with 9 being the Least Common Denominator [LCD]. Since 2⁄9 already has a 9 in the denominator, it does not get touched, so in order to make ⅓ a denominator of 9, we simply multiply both terms by 3, to get 3⁄9. So, adding that to 2⁄9 gives you 5⁄9, also giving you <em>5⁄9</em><em> </em><em>+</em><em> </em><em>x</em><em> </em><em>></em><em> </em><em>⅚.</em><em> </em>Now, we have to find the LCD again because we have two unlike fractions. Now, our Least Common Denominator is 18, so multiply both terms in ⅚ by 3 [15⁄18] and multiply both terms in 5⁄9 by 2 [10⁄18]. Now you have two like fractions to work with, and you can clearly see that your answer is <em>x</em><em> </em><em>></em><em> </em>5⁄18. Although the answer is written in reverse, it is still the same concept.
I am joyous to assist you anytime.