Answer:
the answer is (6, -4)
Step-by-step explanation:
Answer:
y = x*sqrt(Cx - 1)
Step-by-step explanation:
Given:
dy / dx = (x^2 + 5y^2) / 2xy
Find:
Solve the given ODE by using appropriate substitution.
Solution:
- Rewrite the given ODE:
dy/dx = 0.5(x/y) + 2.5(y/x)
- use substitution y = x*v(x)
dy/dx = v + x*dv/dx
- Combine the two equations:
v + x*dv/dx = 0.5*(1/v) + 2.5*v
x*dv/dx = 0.5*(1/v) + 1.5*v
x*dv/dx = (v^2 + 1) / 2v
-Separate variables:
(2v.dv / (v^2 + 1) = dx / x
- Integrate both sides:
Ln (v^2 + 1) = Ln(x) + C
v^2 + 1 = Cx
v = sqrt(Cx - 1)
- Back substitution:
(y/x) = sqrt(Cx - 1)
y = x*sqrt(Cx - 1)
Answer:

Step-by-step explanation:
Component form of a vector is given by
, where
represents change in x-value and
represents change in y-value. The magnitude of a vector is correlated the Pythagorean Theorem. For vector
, the magnitude is
.
190 degrees counterclockwise from the positive x-axis is 10 degrees below the negative x-axis. We can then draw a right triangle 10 degrees below the horizontal with one leg being
, one leg being
, and the hypotenuse of the triangle being the magnitude of the vector, which is given as 9.
In any right triangle, the sine/sin of an angle is equal to its opposite side divided by the hypotenuse, or longest side, of the triangle.
Therefore, we have:

To find the other leg,
, we can also use basic trigonometry for a right triangle. In right triangles only, the cosine/cos of an angle is equal to its adjacent side divided by the hypotenuse of the triangle. We get:

Verify that
Therefore, the component form of this vector is 