1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
13

cookies are sold singly or in packages of 12 or 36. With this packaging, how many ways can you buy 72 cookies?

Mathematics
1 answer:
Fittoniya [83]3 years ago
8 0
There are 3 different ways you can buy 72 cookies.  You can buy 6 packs of 12 cookies.  You could buy 2 packs of 36 cookies.  You could by 1 pack of 36 and 3 packs of 12 to get 72 cookies.
You might be interested in
You want to put a fence around your large yard. There are two companies that you have found to do the work. They have each given
11111nata11111 [884]

Answer:

200

Step-by-step explanation:

balancing it with 120 is 76 so this what you get

6 0
2 years ago
What am i supposed to do??
miskamm [114]
Exterior angle theorem
16x - 7 = 8x + 2 + 10x - 19    ===>  16x -7 = 18x - 17
16x - 16x - 7 = 18x - 16x - 17 ===> -7 = 2x - 17
-7 + 17 = 2x - 17 + 17             ===> 10 = 2x ======> 5 = x
Plug x in to each equation.
Angle P: 8(5) + 2 = 42 deg, Angle Q: 10(5) - 19 = 31
The sum of interior angles = 180. 180 - 42 -31 = 107 deg (angle of PRQ)
To check that line other angle : 16(5) -7 = 73 deg + 107 = 180 deg


5 0
3 years ago
What is the inverse function of d(x) = 2x - 4?
zysi [14]

Answer:

d^{-1}(x) = \frac{x+4}{2}

Step-by-step explanation:

let d(x) = y and rearrange making x the subject, that is

2x - 4 = y ( add 4 to both sides )

2x = y + 4 ( divide both sides by 2 )

x = \frac{y+4}{2}

Change y back into terms of x, so

d^{-1}(x ) = \frac{x+4}{2}

7 0
3 years ago
Someone help me with this proof please ​
Anna71 [15]

Answer:

the first statement is: AB is congruent to DC.

reason: given

Step-by-step explanation:

im not sure about the others

6 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Other questions:
  • The area of a playground is 320 yd2. The width of the playground is 4 yd longer than its length. Find the length and width of th
    8·2 answers
  • Marianne wanted to know students' opinion on the new schedule at school. She survey's the first
    6·1 answer
  • Can you work out the volume of a cube with a length of 10cm, width of 5cm and a height of 8cm?
    15·1 answer
  • The height in feet of a flying disc in t seconds is modeled by the equation h(t) = −4.5t2 + 19.6t + 3. What does the 3 in the eq
    5·1 answer
  • Can someone please help me, I don't get worded questions.
    11·1 answer
  • Can you help me with the answers
    11·1 answer
  • Then find the values of x and y.
    6·1 answer
  • Write a function g whose graph represents the indicated transformation of the graph of f.
    10·1 answer
  • What is the range of the function y = x^2?
    13·1 answer
  • Square LMNO has vertices, L(−4, 2), M(1, 2), N(1, −3), and O(−4, −3). ​Square LMNO is translated 3 units left and 4 units up to
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!