Answer:
5/4 do the 2 lines then add1 then u get the anwswr
Step-by-step explanation:
Answer: 15
Step-by-step explanation:
(r+1)th term of
is given by:-

For
, n= 6

![=\ \dfrac{6!}{4!2!}a^4b^2\ \ \ [^nC_r=\dfrac{n!}{r!(n-r)!}]\\\\=\dfrac{6\times5\times4!}{4!\times2}a^4b^2\\\\=3\times5a^4b^2\\\\ =15a^4b^2](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B6%21%7D%7B4%212%21%7Da%5E4b%5E2%5C%20%5C%20%5C%20%5B%5EnC_r%3D%5Cdfrac%7Bn%21%7D%7Br%21%28n-r%29%21%7D%5D%5C%5C%5C%5C%3D%5Cdfrac%7B6%5Ctimes5%5Ctimes4%21%7D%7B4%21%5Ctimes2%7Da%5E4b%5E2%5C%5C%5C%5C%3D3%5Ctimes5a%5E4b%5E2%5C%5C%5C%5C%20%3D15a%5E4b%5E2)
Hence, the coefficient of the third term in the binomial expansion of
is 15.
The amount needed in the account when Frost retires is given by the annuity formula. Compounding is 2 times per year.
.. A = Pi/(n(1 -(1 +r/n)^(-nt)))
.. 17900 = P*.08/(2*(1 -(1 +.08/2)^(-2*12)))
.. 17900 = P*.04/(1 -(1.04^-24))
.. P ≈ 272,920.64
The compound interest formula can be used to find the present value required. 4015 days is 11 years (ignoring leap years), so the amount to deposit can be calculated from
.. A = P*(1 +r/n)^(nt)
.. 272,920.64 = P*(1 +.08/2)^(2*11) = P*1.04^22
.. P ≈ 115,160.33
We don't know about the company's obligation to Robert. To fulfill its obligation to Frost, it must deposit 115,160.33 today.
Answer: Use the formula y = mx + b in order to solve for b. Then, plug in known vaules.
y= -13x -57
Step-by-step explanation:
Graph the inequality by finding the boundary line, then shading the appropriate area.
y>2x-5