Answer:
10cos(5x)sin(10x) = 5[sin (15x) + sin (5x)]
Step-by-step explanation:
In this question, we are tasked with writing the product as a sum.
To do this, we shall be using the sum to product formula below;
cosαsinβ = 1/2[ sin(α + β) - sin(α - β)]
From the question, we can say α= 5x and β= 10x
Plugging these values into the equation, we have
10cos(5x)sin(10x) = (10) × 1/2[sin (5x + 10x) - sin(5x - 10x)]
= 5[sin (15x) - sin (-5x)]
We apply odd identity i.e sin(-x) = -sinx
Thus applying same to sin(-5x)
sin(-5x) = -sin(5x)
Thus;
5[sin (15x) - sin (-5x)] = 5[sin (15x) -(-sin(5x))]
= 5[sin (15x) + sin (5x)]
Hence, 10cos(5x)sin(10x) = 5[sin (15x) + sin (5x)]
8z-7=81
8z=88
z=11
Have a good day!
:0)
See the attached figure.
<span>ad is a diameter of the circle with center p
</span>
∵ pd = radius = 7 ⇒⇒⇒ ∴ ad = 2 * radius = 2 * 7 = 14
∵ ae = 4 ⇒⇒⇒ ∴ ed = ad - ae = 14 - 4 = 10
∵ ad is a diameter
Δ acd is a triangle drawn in a half circle
∴ Δ acd is a right triangle at c
∵ bc ⊥ ad at point e
By applying euclid's theorem inside Δ acd
∴ ce² = ae * ed
∴ ce² = 4 * 10 = 40
∴ ce = √40 = 2√10 ≈ 6.325
Answer:
The first one
Step-by-step explanation:
Answer:
its 8
Step-by-step explanation:
use ratio solution ..
2 shampoo : 9 water
8 shampoo : 36 water
9x4 = 36
same goes too shampoo.. it needs to be multiplied with 4 as to get 36 water u multiplied 9 with 4