Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
Answer:a quantum absorption of energy
Explanation:
Bohr’s model explains the spectral lines .While the electron of the atom remains in the ground state, its energy is unchanged. When the atom absorbs one or more quanta of energy, the electron moves from the ground state orbit to an excited state and when the atom relaxes back to a lower energy state, it releases energy that is again equal to the difference in energy of the two orbits.
Answer:
The answer is 2
The maximum number an subshell can have is 2
The branched structure isomer will require less energy to melt than the straight chain isomer
explanation
Branched structure isomer has weak intermolecular forces of attraction as compared to straight chain isomers. In addition the branched isomer has a low boiling point as compared to straight chain isomers. Since boiling require the of the intermolecular forces tend to have lower boiling point than straight chain
Answer:
B
Explanation:
i think with exothermic reactions heat is released
this is what i looked up
hope this helps i took chem last year and think this is what i learned