Y=x-5
6=x-5
6+5=x-5+5
11=x
x=11
<h3>Answer is -9</h3>
=================================
Work Shown:
(g°h)(x) is the same as g(h(x))
So, (g°h)(0) = g(h(0))
Effectively h(x) is the input to g(x). Let's first find h(0)
h(x) = x^2+3
h(0) = 0^2+3
h(0) = 3
So g(h(x)) becomes g(h(0)) after we replace x with 0, then it updates to g(3) when we replace h(0) with 3.
Now let's find g(3)
g(x) = -3x
g(3) = -3*3
g(3) = -9
-------
alternatively, you can plug h(x) algebraically into the g(x) function
g(x) = -3x
g( h(x) ) = -3*( h(x) ) ... replace all x terms with h(x)
g( h(x) ) = -3*(x^2 + 3) ... replace h(x) on right side with x^2+3
g( h(x) ) = -3x^2 - 9
Next we can plug in x = 0
g( h(0) ) = -3(0)^2 - 9
g( h(0) ) = -9
we get the same result.
Answer:
See attachment for plot
Step-by-step explanation:
Given

--- increment in the rate
First, we need to model the new rate
A linear equation is:

Where

Compare
and
. we have:

The above represents the previous rate.
The new rate:

Rewrite as:



So, the model is:


<u>The plot at 1 and 2 minutes</u>
When 

When 

So, we have:


<em>Whether she moves backwards or forward, the distance covered remains the same</em>
<em>See attachment for plot</em>
Answer:
using V=w x h x l=11·12·3=396
Step-by-step explanation:
396 cm^3