1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
4 years ago
5

Y = 9(x – 8)2 + 17 Standard form

Mathematics
1 answer:
Yakvenalex [24]4 years ago
3 0

Answer:

I think that the answer would be y=18x−127

You might be interested in
Simplify the expression:<br><br> 4(2 + 8v) =
yawa3891 [41]

Answer:

8 + 32v

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
A variable contains five categories. It is expected that data are uniformly distributed across these five categories. To test th
lubasha [3.4K]

Answer:

33.293 ± 0.01= 33.303 and 33.383,

Step-by-step explanation:

We first need to fit a normal distribution , but neither the mean  nor the standard deviation is given . We therefore estimate the sample mean and sample standard deviation  <em>s</em>. Using the data we find ∑fx=<u>378 </u>  and

<u>∑fx²=1344   </u> so that mean x` = 2.885 or 2.9   and standard deviation s =1.360

x        f                fx       x²         fx²

1       27             27        1          27

2       30           60         4          120

3       29           87         9          261

4       21            84         16        336

<u>5       24           120       25        600           </u>

<u>      ∑f=131      ∑fx=378             ∑fx²=1344   </u>

Mean = x`=<u> </u> ∑fx/ <u>  </u>∑f=  2.9

Standard Deviation = s= √∑fx²/∑f-(∑fx/∑f)²

                  s= √1344/131 - (378/131)²

                   s= √10.26-(2.9)²

                     s= √10.26- 8.41

                    s= √1.85= 1.360

Next we need to compute the expected frequencies for all classes and the value of chi square. The necessary calculations for expected frequencies , ei`s ( ei= npi`) where pi` is the estimate of pi together with the value of chi square are shown below.

Categories      zi`      P(Z<z)             pi`       Expected         Observed

                                                                    frequency ei    Frequency Oi

1                     -1.39      0.0823    0.0823       10.78                  27

2                   -0.66       0.2546     0.1723         22.57                30

3                    0.07        0.5279      0.2733       35.80                 29

4                   0.808      0.7881       0.2602        34.08                21

5                    1.54        0.937          0.1489        19.51                 24

Next we need to compute the expected frequencies for all classes and the value of chi square. The necessary calculations for expected frequencies , ei`s ( ei= npi`) where pi` is the estimate of pi together with the value of chi square are shown below.

Categories           Expected         Observed       (oi-ei)²/ei

                       frequency ei    Frequency Oi         OBSERVED VALUE

1                            10.78                  27                     24.41

2                          22.57                30                         1.54

3                          35.80                 29                        1.29

4                         34.08                21                           5.02

5                          19.51                 24                         1.033

<u>Total                                              131                   33.293</u>

There are five categories , we have used the sample mean and sample standard deviation , so the number of degrees of freedom is 5-1-2= 2

The critical region is chi square ≥ chi square (0.001)(2) =9.21

<u>CONCLUSION:</u>

Since the calculated value of chi square =9.21  does not fall in the critical region we are unable to reject our null hypothesis and conclude normal distribution provides a good fit for the given frequency distribution.

7 0
4 years ago
2x − 3y + 4z = 23 x + 2y − 4z = −10 3x − y + 2z = 19 2 -3 4 1 2 -4 3 -1 2 Correct: Your answer is correct. x y z = 23 −10 19 Fin
Annette [7]

Answer:

(x, y, z) = (4, -1, 3)

Step-by-step explanation:

To solve the system of equations:

2x − 3y + 4z = 23 .........................(1)

x + 2y − 4z = −10 ..........................(2)

3x − y + 2z = 19..............................(3)

Simultaneously, we do that by first eliminating one variable from any two equations to have an equation in two variables. The process is repeated with one of the used equations and the third unused equation to have a second equation in two variables. The two equations in two variables obtained can then be easily solved simultaneously.

Let us eliminate z from (1) and (2)

Add (1) and (2)

(1) + (2):

3x - y = 13 ........................................(4)

Multiply (3) by 2

(3) × 2

6x - 2y + 4z = 38 ............................(5)

Add (5) and (2)

(5) + (2):

7x + 0 + 0 = 28

x = 28/7 = 4

Putting this in (4)

3(4) - y = 13

y = 12 - 13 = -1

Putting this in (3)

3(4) - 4(-1) + z = 19

z = 19 - 16 = 3

Therefore,

(x, y, z) = (4. -1, 3)

7 0
3 years ago
In which step did Rena make the first error?<br> Step 1<br> Step 2<br> Step 3<br> Step 4
Komok [63]
The only step that arena make wrong is step number 2
4 0
3 years ago
You flip a coin 100 times in the air and find that it lands on heads 65 times. Determine the theoretical and experimental probab
scoundrel [369]

Answer:

The experimental probability --> \frac{13}{20}

The theoretical probability --> \frac{1}{2}

Step-by-step explanation:

<u>Key skills needed: Experimental vs theoretical probability, Fractions</u>

1) The first thing you need to understand is experimental probability vs theoretical probability. (Do not include this in your work!!)

- Theoretical probability is based on simple reasoning

- Experimental probability is based on the results a person gets (so the experiment you did by flipping the coin)

2) Now with this, let's start solving:

  1. Experimental probability ---> \frac{heads}{total} -->  You flipped the coin  a total of 100 times, so the denominator would be 100. 65 of those would be heads so 65 is our numerator.
  2. So our experimental probability is --> \frac{65}{100} --> Both have the factor of 5, so take the factor of 5 out of the numerator and denominator and you will get --> \frac{13}{20}
  3. Now onto theoretical probability --> \frac{heads}{total} --> There are 2 faces of a coin, 1 side is heads, and 1 side is tails --> The total number of faces is 2, so 2 is our denominator. There is only 1 side that is heads, so 1 is the numerator. This means  --> Our theoretical probability is \frac{1}{2}

<em>Hope you understood and have a nice day!! :D</em>

5 0
3 years ago
Read 2 more answers
Other questions:
  • If an ant can travel at a constant speed of 980 inches every five minutes how far does an ant-travel in one minute
    9·2 answers
  • Graph of the solution<br> |x| + 1 &gt; 2
    13·1 answer
  • A team that play 35 games lost 2 out of 5 games how many games did they lose?
    5·2 answers
  • The areas of the squares adjacent to two sides of a right triangle are 29.25 units 2 and 13 units 2 . Find the length,x, of the
    10·2 answers
  • How do i explain 7-3 counting back
    10·2 answers
  • How many times does 16 go into 58?
    8·2 answers
  • Someone help me please!!!​
    8·1 answer
  • Convert the fraction 23/<br>12<br>into decimal​
    7·2 answers
  • Solve for B
    12·1 answer
  • A railroad crew can lay 6 miles of track each day. they need to lay 174 miles of trade.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!