Answer:
active transport, like Na + ions leaving the cell
Explanation:
The active transport requires an energy expenditure to transport the molecule from one side of the membrane to the other, but the active transport is the only one that can transport molecules against a concentration gradient, just as the diffusion facilitated the active transport is limited by the number of transport proteins present.
Two major categories of active, primary and secondary transport are of interest. The primary active transport uses energy (generally obtained from ATP hydrolysis), at the level of the same membrane protein producing a conformational change that results in the transport of a molecule through the protein.
The best known example is the Na + / K + pump. The Na + / K + pump performs a countertransport ("antyport") transports K + into the cell and Na + outside it, at the same time, spending on the ATP process.
The secondary active transport uses energy to establish a gradient across the cell membrane, and then uses that gradient to transport a molecule of interest against its concentration gradient.
<span>undergo a dramatic decline in size, possibly to a stable level at or below 1,800 individuals.</span>
Answer:
The process of cellular respiration allows plants to break down glucose into ATP.
Explanation:
Although plants use photosynthesis to produce glucose, they use cellular respiration to release energy from the glucose.
Drug that demages capsule is used to treat viral infection because Curing a viral infection antibiotics are useless against viral infections. This is because viruses are so simple that they use their host cells to perform their activities for them. So antiviral drugs work differently to antibiotics, by interfering with the viral enzymes instead.
Antiviral drugs are currently only effective against a few viral diseases, such as influenza, herpes, hepatitis B and C and HIV – but research is ongoing. A naturally occurring protein, called interferon (which the body produces to help fight viral infections), can now be produced in the laboratory and is used to treat hepatitis C infections.
Answer:
B
Explanation:
Water moves from higher potential to lower potential i.e it moves from surounding to the cell.