Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Answer: 20a^5b^6
Step-by-step explanation: brainliest
Answer:
After 10 years
Rick will have $1,480.24
Sally will have $1,500
Step-by-step explanation:
Data provided in the question:
Principle amount = $1,000
Now,
For Rick
Interest rate by bank, r = 4% = 0.04
Time period, n = 10 years
Now,
Final amount after 10 years with Rick using the compounding formula
Final amount = Principle × (1 + r)ⁿ
= $1,000 × (1 + 0.04 )¹⁰
= $1,480.24
For Sally
Amount paid each year = $50
Therefore,
Total amount paid in 10 years = $50 × 10
= $500
Thus,
Final amount Sally will have after 10 years
= $1,000 + Total amount paid in 10 years
= $1,000 + $500
= $1,500
Hence,
After 10 years
Rick will have $1,480.24
Sally will have $1,500
Pu 2 together straight up then one above it sideways
Answer:
See below.
Step-by-step explanation:
Slope of parallel line is -3/2.
Slope of perpendicular line is 2/3