The answer is 1.5
1.2=1.0
1.3=1.1
1.4=1.2
1.5=1.2
Answer: Choice A) 12x^2 - 48x + 21; all real numbers
===========================================================
Work Shown:
(f * g)(x) = f(x) * g(x)
(f * g)(x) = ( f(x) ) * ( g(x) )
(f * g)(x) = ( -2x+7 ) * ( -6x+3 )
(f * g)(x) = -2x*( -6x+3 ) + 7*( -6x+3 )
(f * g)(x) = -2x*(-6x) - 2x*(3) + 7*(-6x) + 7*(3)
(f * g)(x) = 12x^2 - 6x - 42x + 21
(f * g)(x) = 12x^2 - 48x + 21
The domain is the set of all real numbers because we can plug in any number in for x, to get some output for y. There are no issues to worry about such as division by zero errors, square root of a negative number, etc.
Answer:
3
Step-by-step explanation:
The complete question in the attached figure
we have that
tan a=7/24 a----> III quadrant
cos b=-12/13 b----> II quadrant
sin (a+b)=?
we know that
sin(a + b) = sin(a)cos(b) + cos(a)sin(b<span>)
</span>
step 1
find sin b
sin²b+cos²b=1------> sin²b=1-cos²b----> 1-(144/169)---> 25/169
sin b=5/13------> is positive because b belong to the II quadrant
step 2
Find sin a and cos a
tan a=7/24
tan a=sin a /cos a-------> sin a=tan a*cos a-----> sin a=(7/24)*cos a
sin a=(7/24)*cos a------> sin²a=(49/576)*cos²a-----> equation 1
sin²a=1-cos²a------> equation 2
equals 1 and 2
(49/576)*cos²a=1-cos²a---> cos²a*[1+(49/576)]=1----> cos²a*[625/576]=1
cos²a=576/625------> cos a=-24/25----> is negative because a belong to III quadrant
cos a=-24/25
sin²a=1-cos²a-----> 1-(576/625)----> sin²a=49/625
sin a=-7/25-----> is negative because a belong to III quadrant
step 3
find sin (a+b)
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
sin a=-7/25
cos a=-24/25
sin b=5/13
cos b=-12/13
so
sin (a+b)=[-7/25]*[-12/13]+[-24/25]*[5/13]----> [84/325]+[-120/325]
sin (a+b)=-36/325
the answer issin (a+b)=-36/325
Step-by-step explanation:
s = -4.9t² + 49t
The vertex of the parabola is at t = -b/(2a).
t = -49 / (2 × -4.9)
t = 5
The rocket reaches its maximum height after 5 seconds.