Answer:
The value of first coin will be $151.51 more than second coin in 15 years.
Step-by-step explanation:
You have just purchased two coins at a price of $670 each.
You believe that first coin's value will increase at a rate of 7.1% and second coin's value 6.5% per year.
We have to calculate the first coin's value after 15 years by using the formula

Where A = Future value
P = Present value
r = rate of interest
n = time in years
Now we put the values



A = (670)(2.797964)
A = 1874.635622 ≈ $1874.64
Now we will calculate the value of second coin.



A = 670 × 2.571841
A = $1723.13
The difference of the value after 15 years = 1874.64 - 1723.13 = $151.51
The value of first coin will be $151.51 more than second coin in 15 years.
Answer:
f(x + h) = 3x³ + x² + 9h²x + 3h³ + h² + 9hx² + 2hx
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Distributive Property
- Expand by FOIL (First Outside Inside Last)
- Combining like terms
Step-by-step explanation:
<u>Step 1: Define function</u>
f(x) = x² + 3x³
f(x + h) is x = x + h
<u>Step 2: Simplify</u>
- Substitute: f(x + h) = (x + h)² + 3(x + h)³
- Expand by FOILing: f(x + h) = (x² + 2hx + h²) + 3(x + h)³
- Rewrite: f(x + h) = (x² + 2hx + h²) + 3(x + h)²(x + h)
- Expand by FOILing: f(x + h) = (x²+2hx+h²) + 3(x² + 2hx + h²)(x+h)
- Distribute/Expand: f(x + h) = (x²+2hx+h²) + 3(x³+3hx²+3h²x+h³)
- Distribute 3: f(x + h) = (x²+2hx+h²)+(3x³+9hx²+9h²x+3h³)
- Combine like terms: f(x + h) = 3x³+x²+9h²x+3h³+h²+9hx²+2hx
39=3m-15
39+15=3m
54=3m
54/3=3m/3
m=18
Writing the equation that governs this situation:
-3C - (2.5C/hr)x = -18C
Simplifying, -3 - 2.5x = -18, or 3 + 2.5x = 18
Combining like terms: 2.5x = 18-3 = 15
Then x = 15/2.5 = 6. The temp. will reach -18C after 6 hours.