1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
15

5/12, 2/3, 11/12, 7/6, 17/12 find the common difference between the terms

Mathematics
1 answer:
Ostrovityanka [42]3 years ago
4 0
The denominators are all a multiple of 3
You might be interested in
Need someone to help me
Softa [21]
The answer to this question is B!
8 0
3 years ago
Read 2 more answers
Given the force field F, find the work required to move an object on the given oriented curve. F = (y, - x) on the path consisti
timofeeve [1]

Answer:

0

Step-by-step explanation:

We want to compute the curve integral (or line integral)

\bf \int_{C}F

where the force field F is defined by

F(x,y) = (y, -x)

and C is the path consisting of the line segment from (1, 5) to (0, 0) followed by the line segment from (0, 0) to (0, 9).

We can write  

C = \bf C_1+C_2

where  

\bf C_1 =  line segment from (1, 5) to (0, 0)  

\bf C_2 = line segment from (0, 0) to (0, 9)

so,

\bf \int_{C}F=\int_{C_1}F+\int_{C_2}F

Given 2 points P, Q in the plane, we can parameterize the line segment joining P and Q with

<em>r(t) = tQ + (1-t)P for 0 ≤ t ≤ 1 </em>

Hence \bf C_1 can be parameterized as

\bf r_1(t) = (1-t, 5-5t) for 0 ≤ t ≤ 1

and \bf C_2 can be parameterized as

\bf r_2(t) = (0, 9t) for 0 ≤ t ≤ 1

The derivatives are

\bf r_1'(t) = (-1, -5)

\bf r_2'(t) = (0, 9)

and

\bf \int_{C_1}F=\int_{0}^{1}F(r_1(t))\circ r_1'(t)dt=\int_{0}^{1}(5-5t,t-1)\circ (-1,-5)dt=0

\bf \int_{C_2}F=\int_{0}^{1}F(r_2(t))\circ r_2'(t)dt=\int_{0}^{1}(9t,0)\circ (0,-9)dt=0

In consequence,

\bf \int_{C}F=0

6 0
4 years ago
Do you like quarintine
agasfer [191]

Answer:

no, I don't like quarantine.

x should be 115 because it is parallel to the one above. each line should equal 180. So 180-115= 65

y=65

4 0
4 years ago
Read 2 more answers
Need help finding the missing angle
lys-0071 [83]

Answer:

Step-by-step explanation:

Sinθ = opp/hyp

Sinθ = 12/13

θ = ArcSin (12/13)

θ =67.38

Let x = adj

Tan (67.38) = 15/x

2.4= 15/x

x2.4= 15

x=6.25

Therefore the missing value  is 6.25

6 0
2 years ago
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Yolanda works as a tutor for $10 and hour, and as a waitress for $11 an hour. This month she a combined total of 87 hours at her
    8·1 answer
  • Some help me please help me please help me please help me please help me please help me please help me please help me please
    5·2 answers
  • Decide whether the rates are equivalent. 126 points every 3 games 210 points every 5 games. What is the answer?
    7·1 answer
  • Which graph represents the function f(x) = −|x − 2| − 1? Image for option 1 Image for option 2 Image for option 3 Image for opti
    12·1 answer
  • How do i subtract mix number in fractions?
    12·2 answers
  • 13+18-(4•6)<br>This is order of operations please I need help!!​
    12·1 answer
  • For all values of x f(x)
    8·1 answer
  • The first answer will be marked brainlist
    12·2 answers
  • WHAT NUMBER SHOULD REPLACE THE QUESTION MARK?<br> ANSWER ONLY IN DIGITS
    5·1 answer
  • What is true about the sum of the two polynomials?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!