1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
6

HELP!!! What did I do wrong???

Mathematics
1 answer:
Ksivusya [100]3 years ago
8 0
Your answer is correct. I think your working is wrong

You might be interested in
Which of the following represents the polynomial 5x + 3x^4 + 15 − 7x^3 in standard form, the degree of the polynomial, and the n
professor190 [17]
5x+3x^4+15-7x^3
In standard form:3x^4-7x^3+5x+15
Degree:quartic i believe
# of terms:polynimial or 4 terms

8 0
3 years ago
Jerry has taken a random sample of students and determined the number of electives that each student in his sample took last yea
Yuri [45]
I’m not sure. sorry !






7 0
3 years ago
Help please i need to get this done today
Fittoniya [83]

Answer:

( -2, 12)

(-1, 9)

(0, 6)

(1 , 3)

(2, 0)

Step-by-step explanation:

Input the values into the equation

5 0
3 years ago
Solve for x:<br> x + y = 5
Anika [276]

Answer:

x=5-y

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Pls help me
Vladimir [108]
<h3>Learning Task 1</h3>

Correct responses;

\displaystyle 1. \hspace{0.3 cm} 7^{-1} = \frac{1}{7}

2. (14·a·b·c)⁰ = 1

\displaystyle 3. \hspace{0.3 cm} 10^{-9} = \frac{1}{10^9}

4. 5·(x·y)⁰ = 5

5. 0¹⁵ = 0

\displaystyle 6. \hspace{0.3 cm} \frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4} = 4 \cdot x^3

\displaystyle 7. \hspace{0.3 cm} \left(\frac{5 \cdot x^0}{y} \right)^{-1} = \frac{y}{5}

8. \hspace{0.3 cm}\displaystyle \frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}  = \frac{10 \cdot a^7  \cdot b^6}{c^7}

\displaystyle 9. \hspace{0.3 cm} \frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}  =  \frac{1}{y^{5} \cdot z^2}

\displaystyle 10. \hspace{0.3 cm} \left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2} = 100

11. \displaystyle \hspace{0.3 cm} \left(\frac{(a \cdot b)}{9} \right)^{-1} = \frac{9}{a \cdot b}

\displaystyle 12. \hspace{0.3 cm} \frac{9}{x^{-2}}  = 9 \cdot x^2

13. \displaystyle \hspace{0.3 cm} \frac{12 \cdot b^{-3}}{a^{-4}}  = \frac{12 \cdot a^4}{b^3}

14. \displaystyle \hspace{0.3 cm} \frac{1}{a^{-5 \cdot n}}  =a^{5 \cdot n}

15. \displaystyle \hspace{0.3 cm} \left(\frac{1}{2} \right)^{-5} = 32

<h3>Methods by which the above expressions are simplified</h3>

The given expressions expressed into non zero and non negative exponents are;

\displaystyle 1. \hspace{0.3 cm} \mathbf{7^{-1}} = \underline{\frac{1}{7}}

2. (14·a·b·c)⁰ = 14⁰ × a⁰ × b⁰ × c⁰ = 1 × 1 × 1 × 1 =<u> 1</u>

\displaystyle 3. \hspace{0.3 cm}  \mathbf{ 10^{-9}} =  \underline{ \frac{1}{10^9}}

4. 5·(x·y)⁰ = 5 × x⁰ × y⁰ = 5 × 1 × 1 = <u>5</u>

5. 0¹⁵ = <u>0</u>

\displaystyle 6. \hspace{0.3 cm}  \mathbf{\frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4}} = \frac{ 4 \times 6 \times x^5 \times x^3 \times y^4}{6 \times x^5 \times y^4} = \underline{4 \cdot x^3}

\displaystyle 7. \hspace{0.3 cm}  \mathbf{\left(\frac{5 \cdot x^0}{y} \right)^{-1} }= \frac{1}{\frac{5 \times 1}{y} } = \underline{\frac{y}{5}}

8. \hspace{0.3 cm}\displaystyle  \mathbf{\frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}}  = 10 \cdot a^{5 - (-2)} \cdot  b^{6 - 0}  \cdot c^{-5 -2} = \underline{\frac{10 \cdot a^7  \cdot b^6}{c^7}}

\displaystyle 9. \hspace{0.3 cm}  \mathbf{\frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}}  = y^{-5} \cdot z^{-2} = \underline{\frac{1}{y^{5} \cdot z^2}}

\displaystyle 10. \hspace{0.3 cm} \mathbf{\left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2}} = \left(\frac{1}{10} \right)^{-2} = \frac{1}{\left(\frac{1}{10} \right)^2 } = \frac{1}{\frac{1}{100} } = \underline{100}

11. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{(a \cdot b)}{9} \right)^{-1}} = \frac{1}{\left(\frac{(a \cdot b)}{9} \right) }  = \underline{\frac{9}{a \cdot b}}

\displaystyle 12. \hspace{0.3 cm} \mathbf{\frac{9}{x^{-2}}}  = \frac{9}{\frac{1}{x^2} }  = \underline{9 \cdot x^2}

13. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{12 \cdot b^{-3}}{a^{-4}}}  = 12 \cdot \frac{b^{-3}}{a^{-4}} =12 \cdot \frac{1}{\frac{b^3}{a^4} }  = 12 \cdot \frac{a^4}{b^3}  = \underline{\frac{12 \cdot a^4}{b^3}}

14. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{1}{a^{-5 \cdot n}}}  = \frac{1}{\frac{1}{a^{5 \cdot n}} } = \underline{a^{5 \cdot n}}

15. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{1}{2} \right)^{-5}} = \frac{1}{\left(\frac{1}{2}  \right)^5}  = 2^5 = \underline{32}

Learn more about the laws of indices here:

brainly.com/question/8959311

6 0
2 years ago
Other questions:
  • How many minutes will it take to travel 2.5 miles if you are walking at 3.7 miles per hour?
    5·1 answer
  • Melissa believes the following graph shows direct variation. What is Melissa’s error?
    15·2 answers
  • What is the solution for s in A=ys+y
    8·1 answer
  • Write your answers as (% up) or (% down) *
    12·1 answer
  • Cannonballs are stacked in a pyramid shape with a triangular base of 5 cannonballs on a side. How many cannonballs in all are in
    6·1 answer
  • A randomly generated password has four characters. Each character is either A, B, C, D, E or F or a number from 0 - 9. Each char
    9·2 answers
  • Justin uses 4 drops of Mio for 16 ounces of water. If he is planning to flavor 640 ounces of water, how many drops of Mio should
    13·2 answers
  • Find the numbers of faces, edges, and vertices of the solid.
    5·1 answer
  • Betty’s Bite-Size Candies are packaged in bags. The number of candies per bag is normally distributed, with a mean of 50 candies
    12·1 answer
  • a music store has 40 trumpets 39 clarinets 24 violins 51 fluites and 16 trambones in stock write each ratio in simplest gorm
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!