1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
3 years ago
13

Y= kx+m Make x the subject

Mathematics
1 answer:
Ilia_Sergeevich [38]3 years ago
7 0
Kx=y-m
x=(y-m)/k
Note that this is also standard linear form, x=y/k-m/k where slope=1/k and x intercept is -m/k.
You might be interested in
Whats the gcf of 15 and 70
makvit [3.9K]
The gcf of 15 and 70 is 5
8 0
3 years ago
Read 2 more answers
Please help! See algebra question..
zhenek [66]

Answer:

n=-10

Step-by-step explanation:

n+3=-7

n=-7-3

n=-10

this helps thank you

branlist please

8 0
2 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
WHAT IS IT CAN YOU TELL PLEASE
nataly862011 [7]
It’s c i’m 99% sure ???
3 0
2 years ago
Read 2 more answers
Identify whether each phrase is an expression, equation, or inequality.
Andreyy89

Answer:

Step-by-step explanation: 4y+8=9 is an equation. 3-2 is an expression. 7y<6 is an inequality!

7 0
3 years ago
Other questions:
  • Let f(x)=3x^2+2.
    14·1 answer
  • Determine the intervals on which the function is increasing, decreasing, and constant.
    13·2 answers
  • A right triangle has a vertex at point M and a height of 5 units. The base of the triangle is on MN←→− and is 3 units long. One
    9·2 answers
  • A triangular pyramid has a volume of 84 cubic centimeters. The triangular base has a 14-centimeter base and a 8-centimeter heigh
    11·1 answer
  • What is the domain of the function shown in this graph?
    9·1 answer
  • Deku and reaper also what is 2-4=?
    12·1 answer
  • Find the measure of Arc VF.
    5·1 answer
  • Draw an area model. Then, Solve using the standard algorithm.<br> 642 x 207
    15·1 answer
  • An airplane flies from City 1 at (0, 0) to City 2 at (33, 56) and then to City 3 at (23, 32). What is the total number of miles
    8·2 answers
  • Carlos spent a total of $40 at the grocery store. Of this amount, he spent $14 on fruit. What percentage of the total did he spe
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!