There are 7 chairs in each row length.
Step-by-step explanation:
Let number of chairs in 1 row be 'x'.
Let total number of chairs be 'y'.
Given:
Hue can form 6 rows of a given length with 3 chairs left over.
It means that Total number of chairs is equal to chairs in 1 rows multiplied by number of rows which is 6 plus number of chairs which is left which is 3.
Framing in equation form we get.
Also Given:
Hue can form 8 rows of that same length if she gets 11 more chairs.
It means that Total number of chairs is equal to chairs in 1 rows multiplied by number of rows which is 8 minus number of chairs which is required more which is 11.
Framing in equation form we get.
From equation 1 and equation 2 we can say that L.H.S is same.
So according to law of transitivity we get;
Combining like terms we get;
Using Subtraction and Addition property we get;
Now Using Division Property we will divide both side by 2.
Hence there are 7 chairs in each row length.
-7 and positive 6. if you multiply a negative by a positive it will always be a negative.
65 sequences.
Lets solve the problem,
The last term is 0.
To form the first 18 terms, we must combine the following two sequences:
0-1 and 0-1-1
Any combination of these two sequences will yield a valid case in which no two 0's and no three 1's are adjacent
So we will combine identical 2-term sequences with identical 3-term sequences to yield a total of 18 terms, we get:
2x + 3y = 18
Case 1: x=9 and y=0
Number of ways to arrange 9 identical 2-term sequences = 1
Case 2: x=6 and y=2
Number of ways to arrange 6 identical 2-term sequences and 2 identical 3-term sequences =8!6!2!=28=8!6!2!=28
Case 3: x=3 and y=4
Number of ways to arrange 3 identical 2-term sequences and 4 identical 3-term sequences =7!3!4!=35=7!3!4!=35
Case 4: x=0 and y=6
Number of ways to arrange 6 identical 3-term sequences = 1
Total ways = Case 1 + Case 2 + Case 3 + Case 4 = 1 + 28 + 35 + 1 = 65
Hence the number of sequences are 65.
Learn more about Sequences on:
brainly.com/question/12246947
#SPJ4
Answer:30+15
Step-by-step explanation:
(This user has been deleted.)