Answer:
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 38 minutes, standard deviation of 4.5 minutes.
Determine the interval that represents the middle 68% of her commute times.
Within 1 standard deviation of the mean. So
38 - 4.5 = 33.5 minutes
38 + 4.5 = 42.5 minutes.
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Answer:
0.27
Step-by-step explanation:
Suppose A is the event of defect in the brake system and B is the event of defect in the fuel system,
We have given,
P(A) = 0.25,
P(B) = 0.17
P(A∩B) = 0.15 ( the probability of defects in both systems simultaneously is 0.15 ),
We know that,
P(A∪B) = P(A) + P(B) - P(A∩B)
= 0.25 + 0.17 - 0.15
= 0.27
Hence, the probability that the defect is the brakes or the fueling system is 0.27.
Answer:
I think
11cm²-5cm²=121+25
and the square root of that will give you 12.08
and that's the answer
Answer:
2100
Step-by-step explanation:
False. Because if it has one then it is consistent.
Source: If a consistent system has an infinite number of solutions, it is dependent . When you graph the equations, both equations represent the same line. If a system has no solution, it is said to be inconsistent. (https://www.varsitytutors.com/hotmath/hotmath.../consistent-and-dependent-systems)