<span>Protozoa
Viruses
Algae
Fungi
Bacteria</span>
Explanation:
<h2>It is interesting to note that CO2 is still believed to be the No 1 greenhouse gas instead of water vapour. Many excellent climate scientist (e.g. Richard Lindzen, Roy Spencer, John Christy, etc) have dealt with the issue and shown both in books and research articles that CO2 is a very minor player governing global climate.</h2><h2>So what drives climate?</h2><h2>The answer must obviously be found in the hydrological cycle, where the oceans play a major role together with extraterrestrial process with the Sun having the ultimate role. We know that solar energy (insolation) does not vary sufficiently to explain the climatic excursion our planet has experienced on a short and long term. It is sufficient to consider the Little Ice Age and the Medieval Warm Period, not mentioning the past ice ages, to understand that there are many complicated factors to consider before we can explain climate variability.</h2><h2>Solar activity is naturally a major player but this does not mean only total solar insolation (TSI) but also solar magnetic activity. Also the gravitational influence of the entire solar system must be taken in account, not forgetting our own natural satellite, the Moon, influencing at least ocean tides. Very interesting views on climate variability and cosmic activity have been presented by Henrik Svensmark.</h2><h2>A very simplistic example how the water cycle could adjust climate is the following mental construct: The Sun warms the ocean surface increasing evaporation. Increase in water vapour content decreases the density of the air, which thus rises to higher altitudes where eventually adiabatic cooling reaches a level where water vapour starts to condense. The availability of condensation nuclei, possibly enhanced by high energy cosmic radiation especially during low level solar magnetic activity, leads to strong cloud formation. This eventually limits solar warming of the ocean surface and decreases evaporation with less cloud formation. This entire cycle can be compared to a very effective thermostat, by some aptly termed the water thermostat responsible for keeping global temperatures at a suitable level depending on local conditions</h2>
BY SIMRAN
MY HEART
ABHI IS IN MY
FOLLOWING
U FOLLOW ALSO
HIM❤❤
Answer:
The correct answer is b.Amplify the gene using PCR. Insert the gene into a plasmid vector. Transform the vector into the bacteria.
Explanation:
If I have a very small amount of gene for a fluorescent protein than the first step is to amplify the gene so that appropriate protein can be produced. PCR is the instrument that is used to amplify the protein.
So after amplification of the gene, the plasmid vector will be used in which the gene will be inserted because the plasmid vector is used to insert this gene in host cells where protein will be expressed.
The final step will be to transform bacteria with recombinant plasmid so that plasmid can make its copy and express a fluorescent protein in bulk.