This question not incomplete
Complete Question
The life of a semiconductor laser at a constant power is normally distributed with a mean of 7,000 hours and a standard deviation of 600 hours. If three lasers are used in a product and they are assumed to fail independently, the probability that all three are still operating after 7,000 hours is closest to? Assuming percentile = 95%
Answer:
0.125
Step-by-step explanation:
Assuming for 95%
z score for 95th percentile = 1.645
We find the Probability using z table.
P(z = 1.645) = P( x ≤ 7000)
= P(x<Z) = 0.95
After 7000 hours = P > 7000
= 1 - P(x < 7000)
= 1 - 0.95
= 0.05
If three lasers are used in a product and they are assumed to fail independently, the probability that all three are still operating after 7,000 hours is calculated as:
(P > 7000)³
(0.05)³ = 0.125
I seef(x) between 0 to 1 is goes to xfinity but in the negative direction
We can say it is large neagtive numbet when x is between 0 and 1
Answer:
, all integers where n≥1
Step-by-step explanation:
we know that
The explicit equation for an arithmetic sequence is equal to
a_n is the th term
a_1 is the first term
d is the common difference
n is the number of terms
we have

Remember that
In an Arithmetic Sequence the difference between one term and the next is a constant, and this constant is called the common difference.
To find out the common difference subtract the first term from the second term

substitute the given values in the formula

The domain is all integers for 
-8y = -4x + 16
Y = 4/8x - 2