Hyp^2 = leg1^2 + leg2^2
hyp^2 -leg1^2 = leg2^2
17^2 - 8^2 = leg2^2
leg2^2 = 289 -64
leg2^2 = 225
leg2 = 15
Answer:
99.7% of customers have to wait between 8 minutes to 30 minutes for their food.
Step-by-step explanation:
We are given the following in the question:
Mean, μ = 18 minutes
Standard Deviation, σ = 4 minutes
We are given that the distribution of amount of time is a bell shaped distribution that is a normal distribution.
Empirical Formula:
- Almost all the data lies within three standard deviation from the mean for a normally distributed data.
- About 68% of data lies within one standard deviation from the mean.
- About 95% of data lies within two standard deviations of the mean.
- About 99.7% of data lies within three standard deviation of the mean.
Thus, 99.7% of the customers have to wait:

Thus, 99.7% of customers have to wait between 8 minutes to 30 minutes for their food.
Answer:
Option C .
Step-by-step explanation:
We would like to solve the below <u>quadratic </u><u>equation</u><u> </u>,

Step 1 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>


Step 2 : <u>F</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>R</u><u>H</u><u>S</u><u> </u><u>:</u><u>-</u>



Step 3 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>e</u><u>a</u><u>c</u><u>h</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>



<u>H</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>C</u><u> </u><u>i</u><u>s</u><u> </u><u>c</u><u>o</u><u>r</u><u>r</u><u>e</u><u>c</u><u>t</u><u> </u><u>.</u>
hi
-16t²+250 = 75
-16t² = 75 -250
-16t² = -175
t² = -175 /-16
t² = 175/16
Here there si two solutions : t =
and t = - 
However, as time cannot rewind, we will keep only positive solution
So t = 
in seconds it will be : 3.3 seconds
Answer: (3,-2)
Step-by-step explanation:


new system:

add.

plug in -2 for y

system:
