Answer:
(a)96.77%
(b)3.23%
Step-by-step explanation:
Starting with the Michaelis-Menten equation which is used to model biochemical reactions:
Dividing both sides by 
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D)
Where:
maximum rate achieved by the system
=The Michaelis constant
Substrate concentration
(a) When ![[S]=30K_M](https://tex.z-dn.net/?f=%5BS%5D%3D30K_M)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{30K_M}{K_M + 30K_M}\\\dfrac{v}{V_{max}}=\dfrac{30}{1 + 30}\\\dfrac{v}{V_{max}}=\dfrac{30}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{30}{31}X100=96.77\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30K_M%7D%7BK_M%20%2B%2030K_M%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B1%20%2B%2030%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7DX100%3D96.77%5C%25)
(b)When ![K_M=30[S]](https://tex.z-dn.net/?f=K_M%3D30%5BS%5D)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{[S]}{30[S] + [S]}\\\\=\dfrac{1[S]}{30[S] + 1[S]}\\=\dfrac{1}{30 + 1}\\\dfrac{v}{V_{max}}=\dfrac{1}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{1}{31}X100=3.23\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7B30%5BS%5D%20%2B%20%5BS%5D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%5BS%5D%7D%7B30%5BS%5D%20%2B%201%5BS%5D%7D%5C%5C%3D%5Cdfrac%7B1%7D%7B30%20%2B%201%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7DX100%3D3.23%5C%25)
Answer:
Identity
Step-by-step explanation:
Function and its inverse was graphed.
<u>Step-by-step explanation:</u>
y = -4x²- 2
To find the inverse function of y = -4x²- 2 we have to transform the formula to calculate x in terms of y.
y = -4x²- 2
-4x² = y - 2
x = √(y-2) / -4
Now we can change the letters to follow the convention that x is the independent variable and y is the function's value:
y = √(x-2) / -4
Now we have to draw the graph as,
It was side by side that is LHS is the function and the RHS is its inverse.
Answer:
bro what
Step-by-step explanation:
<h3><u>Answer:</u></h3>
<h3>
<u>Solution:</u></h3>
We are given that the arithmetic progression is defined by :
➝ 2n + 1
<em>Therefore, </em>
- <u>For </u><u>first </u><u>term</u>
➙ n = 1
➝ 2 × 1 + 1
➝ 2 + 1
➝ 3
- <u>For </u><u>second </u><u>term</u>
➙ n = 2
➝ 2 × 2 + 1
➝ 4 + 1
➝ 5
- <u>Common </u><u>difference</u>
➙ 2nd term - 1st term
➝ 5 - 3
➝ 2
<h3><u>More </u><u>information</u><u>:</u></h3>
- The difference between the successive term and the preceding term is the difference of an arithmetic progression. It is always same for the same arithmetic progression.