1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tankabanditka [31]
3 years ago
5

Can anyone please help me with this equation?

Mathematics
1 answer:
AysviL [449]3 years ago
3 0

21 = 2x + 5

---> 21 - 5 = 2x

----> 16 = 2x

-----> x = 8

The internship pays $8 per hour.

You might be interested in
Plz solve this problem of trigonometry<br>i am an aakashian​
makkiz [27]

Step-by-step explanation:

\bf L.H.S = \tt \dfrac{sec\: \theta + tan \:  \theta - 1}{tan \:  \theta - sec \:  \theta + 1}  \\  \\

:  \implies \tt \dfrac{\frac{1}{cos  \: \theta}  +  \frac{sin \:  \theta}{cos \: \theta}  - 1}{  \frac{sin \:  \theta}{cos \:  \theta} -  \frac{1}{cos \:  \theta} + 1   } \:  =   \dfrac{1 + sin \:  \theta - cos \:  \theta}{sin \: \theta + cos \:  \theta} \\  \\

: \implies \tt\dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta + (cos \:  \theta - 1)} \:  \times  \: \dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta  -  (cos \:  \theta - 1)} \\  \\

: \implies \tt\dfrac{ sin^{2}  \:  \theta  + cos^{2}  \:  \theta  + 1 - 2  \: cos \:  \theta  - 2  \: sin \:  \theta \: (cos \:  \theta - 1)}{sin^{2}  \: \theta  -  (cos \:  \theta - 1)^{2} } \\  \\

: \implies \tt\dfrac{1 + 1 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta - 1 + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta  - sin^{2} \:  \theta - cos^{2}   \:  \theta  + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 (1 - \:  cos \:  \theta )- 2 \: sin \:  \theta  (1 - \: cos \:  \theta)}{ 2 \: cos \: \theta - 2 \: cos^{2}   \:  \theta} \\  \\

: \implies \tt\dfrac{(2  +  2 \:  sin \:  \theta)  \:  \cancel{(1 -  cos\:  \theta)}}{2 \: cos \:  \theta  \:  \cancel{(1 - cos \:  \theta)}} \:  =  \:  \dfrac{1 + sin \:  \theta}{cos \: \theta}  \\  \\

: \implies\tt\dfrac{1 + sin \:  \theta}{cos \: \theta}  \:  \times  \: \dfrac{1  -  sin \:  \theta}{1 - sin \: \theta} \\  \\

:  \implies\tt\dfrac{1 + sin^{2}  \:  \theta}{cos \: (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos^{2}  \:  \theta}{cos \: \theta (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos \:  \theta}{1 - sin \: \theta}  \:  = \:  \bf{ R.H.S}\\  \\

\huge\bigstar  \:\underline{\red{\sf Hence, Proved}} \:  \bigstar \\

6 0
4 years ago
X-(9x-10)+11=12x+3(-2x+ 1/3)
morpeh [17]
X - (9x - 10) + 11 = 12x + 3(-2x + \frac{1}{3} ) equals x = \frac{10}{7} .

First, simplify brackets. / Your problem should look like: x - 9x + 10 + 11 = 12x + 3(-2x + \frac{1}{3} ). 
Second, simplify x - 9x + 10 + 11 to -8x + 10 + 11. / Your problem should look like: -8x + 10 + 11 = 12x + 3(-2x + \frac{1}{3} ).
Third, simplify -8x + 10 + 11 to -8x + 21. / Your problem should look like: -8x + 21 = 12x + 3(-2x + \frac{1}{3} ).
Fourth, expand. / Your problem should look like: -8x + 21 = 12x - 6x + 1.
Fifth, simplify 12x - 6x + 1 to 6x + 1./ Your problem should look like: -8x + 21 = 6x + 1.
Sixth, add 8x to both sides. / Your problem should look like: 21 = 6x + 1 + 8x.
Seventh, simplify 6x + 1 + 8x to 14x + 1. / Your problem should look like: 21 = 14x + 1.
Eighth, subtract 1 from both sides. / Your problem should look like: 21 - 1 = 14x.
Ninth, simplify 21 - 1 to 20. / Your problem should look like: 20 = 14x.
Tenth, divide both sides by 14. / Your problem should look like: \frac{20}{14} = x.
Eleventh, simplify \frac{20}{14} to \frac{ 10}{7} . / Your problem should look like: \frac{10}{7} = x.
Twelfth, switch sides. / Your problem should look like: x = \frac{10}{7} which is your answer.

8 0
3 years ago
7 of 1010 PointsThat is the multiplicity of each of the roots of the graph of f(x) = 2x + 12r³ +16r² - 12x - 18?-3, multiplicity
Paul [167]

Solution:

Given the function;

f(x)=2x^4+12x^3+16x^2-12x-18

The graph of the function is;

Thus, the multiplicity of each of the roots of the graph is;

\begin{gathered} -3,multiplicity\text{ }2; \\  \\ -1,multiplicity\text{ }1; \\  \\ 1,multiplicity\text{ }1 \end{gathered}

CORRECT OPTION: D

6 0
1 year ago
PLEASE ANSWER ASAP FOR BRAINLEST!!!!!!!!!!!!!!!!!!!!
ehidna [41]

Answer:

yes, you can form a triangle with the side lengths given

4 0
3 years ago
Read 2 more answers
The length of a picture frame is 2 inches more than the width. The perimeter of the frame is 36 inches. What is the length of th
ollegr [7]
Answer in one complete sentence:
____________________________________________
   "The length of the frame is ten (10) inches."
_____________________________________________
Explanation:
_____________________________________________
Perimeter = P = 36 in.
Length = L = 2 +2
Width = w .
_____________________________________________
These are the two equations for the system of equations:

P = 2L + 2w = 36 in.
L = 2 + w
_____________________________________________
Solve for "L" (length) of the frame.
______________________________________
In the equation:
______________________________________
P = 2L + 2w = 36.

{Note: standard knowledge; and/or look up: 
______________________________________
Formula for the Perimeter of a rectangle:  P = 2L + 2w} ;
_______________________________________
We are given:  P = 36 in.
 
Rewrite, substituting "2+w" for "L" ;

P = 2(2+w) + 2w = 36 ;
___________________________
Note:  2(2+w) = 2*2 + 2w = 4 + 2w .

Now, Rewrite the equation, substituting "(4 + 2w) for "2(2+w)" ;
__________________________________________________
P = (4 + 2w)  + 2w = 36 ;

P =  4 + 2w + 2w = 36 ;

Combine the "like terms" ;
____________________________________________
  + 2w + 2w = 4w ;
____________________________________________
   P = 4 + 4w = 36 ;  
____________________________________________
↔   4 + 4w = 36 ;
____________________________________________
Subtract "4" from EACH SIDE of the equation:
____________________________________________
  →  4 + 4w − 4 = 36 − 4 ;
____________________________________________
 to get:
____________________________________________
            →  4w  =  32 ;
____________________________________________
            → Divide EACH SIDE of the equation by "4" ; to isolate "w" on one side of the equation; and to solve for "w" ;  
____________________________________________
            →  4w / 4 = 32 / 4 ;

               →  w = 8 .
____________________________________________
Now, to solve for: "L" (the length).
____________________________________________
    Length:  L = 2 + w ; 

                 →  L = 2 + 8 = 10 inches.
____________________________________________
Answer in one complete sentence:
____________________________________________
   "The length of the frame is ten (10) inches."
____________________________________________

7 0
3 years ago
Other questions:
  • What is the value of 6(2b-4) when b=5?
    10·2 answers
  • A rectangle measures 10 cm by 16cm what is the perimeter
    8·2 answers
  • 4. Find m <br> a) 76 <br> b) 104<br> c) 66<br> d) 114
    9·1 answer
  • Megan uses 2/3 cup of almonds to make 4 cups of trail mix. Using this same ratio, how many cups of almonds would Megan need to m
    10·1 answer
  • Point J is on line segment IK. Given JK = 8 and IJ = 7, determine the length IK.​
    9·1 answer
  • I need the work and the answer
    5·1 answer
  • What is the solution to the equation sqrt 2x+3- sqrt x+2=2
    10·1 answer
  • For an art project, Kelvin cut a 4-foot piece of yarn into pieces. He then measured the length of each piece of yarn to the near
    10·1 answer
  • Help with this math question, I am graphing them to see which one is correct, but please help so I can speedy out of this, pleas
    10·1 answer
  • Miriam is playing a simple game of dice. For every 1 or 6 rolled, Miriam will
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!