Answer:
Answer A Because If you calculate It the slope for the graph Is 4
Answer: 228 students
Step-by-step explanation:
Since the results for the standardized test are normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = test reults
µ = mean score
σ = standard deviation
From the information given,
µ = 1700 points
σ = 75 points
We want to find the probability of students expected to score above 1850 points. It is expressed as
P(x > 1850) = 1 - P(x ≤ 1850)
For x = 1850,
z = (1850 - 1700)/75 = 150/75 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.97725
P(x > 1850) = 1 - 0.97725 = 0.02275
If 10,000 students take the exam, then the number of students you would expect to score above 1850 points is
0.02275 × 10000 = 228 students
Answer:
x=45°
Step-by-step explanation:
The 160° plus the unlabeled angle to the left of it are supplementary, meaning when added they equal 180°. The unlabeled angle will therefore be 20°. The angle across from the 20° will also be 20°. 115° + 20° = 135°. Now all that is left on the top half is x.
180° - 135° = 45°
True
I hope this helps you