I’m pretty sure it’s D. variable
Answer:
Yes
Explanation:
Newton's laws states that gravity or force will stop the balls movement. Think of space for a example, if you pushed a soccer ball into space if would float for eternity.
Answer:
= 285 Joules
Explanation:
a) answer can be found out in attachment
(b) The temperature for the isothermal compression is the same as the temp at the end of the isobaric expansion. Since pressure is held constant but volume doubles, we use the ideal gas law:
p V = nR T to see that the temperature also doubles.
.So... temp for isothermal compression = 355×2 = 710 K
.(c) The max pressure occurs at the top point. At this point, the volume is back to the original value but the temperature is twice the original value. So the pressure at this point is twice the original, or
max pressure = 2×240000 Pa = 480000 Pa = 4.80 x 10^5 Pa
(d) total work done by the piston = workdone during isothermal compression - work done during expansion =
= nRT ln(V initial / V final)-p (V initial - V final)
= nRT ln(2) - nR(T final - T initial)
= 0.250× 8.314 ×710×ln(2)-0.250×8.314× (710 - 355)
= 285 Joules
Answer:
a) 264.74 N
b) 91.15 N
c) 20.12°
Explanation:
Given:
Angle between the rope and the vertical, θ = 19°
Tension in the rope, T = 280 N
For the system to be in equilibrium,
The net force in vertical as well as in horizontal direction, should be zero
Therefore,
a) For Vertical direction
Weight of the child = vertical component of the tension
W = T cosθ ..............(1)
or
W = 280 cos19° = 264.74 N ............(a)
b) For horizontal
force on the child, F = T sinθ .............(2)
or
F = 280 sin19° = 91.15 N
c) Now, on dividing (1) and (2), we have
W/F = Tcosθ/Tsinθ
or
tanθ = F/W
now, for F = 97 N
tanθ = 97/264.74 = 0.3663 (W from (a))
or
θ = tan⁻¹(0.3663)
or
θ = 20.12°