Answer:
A cyclotron is a type of particle accelerator.
Explanation:
Cyclotron frequency is the frequency of a charged particle moving perpendicular to the direction of a uniform magnetic field B, since that motion is always circular, the cyclotron frequency is given by equality of centripetal force and magnetic Lorentz force.
It is the last number minus 3
Given the following information we have 20 watermelons from mark and 10 fishes from kim therefore we add the longitude of Walmart to the latitude of sams club and end up with a total of 1,000 dish soaps then we convert that into inches which leaves us at 20,000,000 inches of cats then multiply that number to 10 giraffes and we get
1.989 × 10^30 kg and therefore the mass of the sun is 1.989 × 10^30 kg.
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring ?
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m
_______________________________
I Hope this helps, greetings ... Dexteright02! =)
Answer:
a) Batteries and fuel cells are examples of galvanic cell
b) Ag-cathode and Zn-anode
c) Cell notation: Zn(s)|Zn²⁺(aq) || Ag⁺(aq)|Ag(s)
Explanation:
a) A galvanic cell is an electrochemical cell in which chemical energy is converted to electrical energy. The chemical reaction which drives a galvanic cell is a redox reaction i.e. a reduction-oxidation process.
A typical galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs. Batteries and fuel cells are examples of galvanic cells.
b) The nature of the electrode that will serve as an anode or cathode depends on the value of the standard reduction potential (E⁰) of that electrode. The electrode with a higher or more positive the value of E⁰ serves as the cathode and the other will function as an anode.
In the given case, the E⁰ values from the standard reduction potential table are:
E⁰(Zn/Zn2+) = -0.763 V
E°(Ag/Ag+)=+0.799 V
Therefore, Ag will be the cathode and Zn will be the anode
c) In the standard cell notation, the anode half cell is written on the left followed by the salt bridge '||' and finally the cathode half cell to the right.
Zn(s)|Zn²⁺(aq) || Ag⁺(aq)|Ag(s)