Haploid cells join to form an organism that has a complete set of chromosomes
The TRUE statements are 'proteins often have more than one transmembrane domain'; 'they are regions of a transmembrane protein that actually pass through the lipid bilayer' and 'they are usually shaped like alpha-helices'.
A transmembrane domain is a membrane-spanning region within a protein. The transmembrane domains are hydrophobic regions that can be inserted into the cell membrane.
The transmembrane domains are usually shaped like alpha-helices.
This secondary structure (alpha-helices) causes the amino acid R-groups to project radially, thereby these side chains can interact with each other.
Proteins need only a single transmembrane domain to be anchored to the membrane, but they often have more than one.
For example, Acyl-coenzyme A cholesterol acyltransferases 1 and 2 (ACAT1 and ACAT2) have multiple transmembrane domains.
The transmembrane domains are regions of a transmembrane protein that actually pass through the lipid bilayer.
These domains contain amino acids with hydrophobic R-groups that pass through the membrane and interact with the hydrophobic tails of the fatty acid chains present in the lipid bilayer.
The transmembrane domains anchor transmembrane proteins to the lipid bilayer.
The interactions between amino acids of the transmembrane domains and fatty acids in the lipid bilayer help to anchor transmembrane proteins and stabilize the cell membrane.
Learn more in:
brainly.com/question/9444547?referrer=searchResults
A plant without chlorophyll would not be able to photosynthesise because chlorophyll serves to absorb sunlight, which is used to break apart the bonds in water during photosynthesis. A plant that is unable to photosynthesise is not able to create glucose, hence it would likely die unless it was receiving glucose through another source. This is because the plant relies on the energy it gets from breaking down glucose for important internal functions.
Answer:
A series of nonpolar amino acids would most likely be located in the interior region of the tridimensional molecule.
Explanation:
Proteins are formed by linearly arranged amino acids, each with a side chain: the R-group.
Of the 20 different amino acids that compose the proteins, about half of them -10- are non-polar. Their R-groups are not stable if they are in contact with water, meaning that non-polar amino acids are hydrophobic.
When proteins are synthesized, they acquire a three-dimensional structure that makes them more stable. Lineal polypeptides get folded and turn into a shape that makes them more stable in the environment and capable of accomplishing their biological role. When they are in an aqueous media, their bent shape leaves the hydrophilic R-groups in contact with water. The hydrophilic R-groups stick in the center of the polypeptide, facing the protein interior, and avoiding interaction with water.