Answer:
C(n) = pn
Step-by-step explanation:
Given :
n = time in hours for service call
C = total cost
Total cost = unit cost per hour * time in hours
If unit cost per hour = p
Hence,
C(n) = p * n
C(n) = pn
You can buy 6 bags of forks and 8 bags of spoons. All you simply have to do is find the common multiple of the two. You can just multiply them both if you can’t find any others or it’s easier
The given proof of De Moivre's theorem is related to the operations of
complex numbers.
<h3>The Correct Responses;</h3>
- Step C: Expanding and collecting like terms
- Step D: Trigonometric formula for the cosine and sine of the sum of two numbers
<h3>Reasons that make the above selection correct;</h3>
The given proof is presented as follows;
![\mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%20%2B%201%7D%7D)
- Step A: By laws of indices, we have;
![\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1} = \mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}](https://tex.z-dn.net/?f=%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%20%2B%201%7D%20%3D%20%5Cmathbf%7B%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%7D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%7D)
![\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = \mathbf{\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}](https://tex.z-dn.net/?f=%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%5E%7Bk%7D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%20%3D%20%20%5Cmathbf%7B%5Cleft%5Bcos%28k%20%5Ccdot%20%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Cright%5D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%7D)
- Step B: By expanding, we have;
![\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right]](https://tex.z-dn.net/?f=%5Cleft%5Bcos%28k%20%5Ccdot%20%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Cright%5D%20%5Ccdot%20%5Cleft%5Bcos%28%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%20%3D%20cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20-%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%2B%20i%20%20%5Ccdot%20%5Cleft%20%5Bsin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20%2B%20cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D)
- Step D: From trigonometric addition formula, we have;
cos(A + B) = cos(A)·cos(B) - sin(A)·sin(B)
sin(A + B) = sin(A)·cos(B) + sin(B)·cos(A)
Therefore;
![cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right] = \mathbf{ cos(k \cdot \theta + \theta) + i \cdot sin(k \cdot \theta + \theta)}](https://tex.z-dn.net/?f=cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20-%20sin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%2B%20i%20%20%5Ccdot%20%5Cleft%20%5Bsin%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20cos%28%5Ctheta%29%20%2B%20cos%28k%20%5Ccdot%20%5Ctheta%29%20%5Ccdot%20sin%28%5Ctheta%29%20%5Cright%5D%20%3D%20%5Cmathbf%7B%20cos%28k%20%5Ccdot%20%5Ctheta%20%2B%20%5Ctheta%29%20%2B%20i%20%5Ccdot%20sin%28k%20%5Ccdot%20%5Ctheta%20%20%2B%20%5Ctheta%29%7D)
Learn more about complex numbers here:
brainly.com/question/11000934
<h3>
Answer: Choice C</h3>
4/36 = 1/9
==============================================================
Explanation:
Circle the second row. This is where each of the red die results are "2"
Then look at the cases when the second die is less than "5". So we could have a 1, 2, 3, or 4 on this second die.
As you can see, there are 4 cases when the first number is a 2 (red) and the second number is less than 5 (white).
We have m = 4 cases we want out of n = 6*6 = 36 cases total.
m/n = 4/36 = 1/9 is our final answer.
Answer:
What is your question..????