Answer:
Crossing-over between homologous chromosomes (prophase 1), the random lining of homologous chromosomes (metaphase 1), and random fertilization are the mechanisms involved in genetic variation.
Explanation:
Crossing-over between homologous chromosomes (prophase 1), the random lining of homologous chromosomes (metaphase 1), and random fertilization are the mechanisms involved in genetic variation.
The Crossing-over events occur between two homologous chromosomes in the equatorial plane and make the daughter cells genetically different from the original one. The Chiasma is the position where two homologous chromatids interchange genetic information, giving a place for new genetic material or information to be provided to descendants. After crossing over, homologous chromosomes get separated again.
On the equatorial plane, homologous paired together, randomly aline with their kinetochores facing opposite poles. The random arrangement of tetrads is different in every cell going through the meiosis process. There is no equal alinement between two cells. When tetrads aline in the equatorial plane, there is no predetermined order for each of the homologous chromosomes of each tetrad to face one of the poles and then migrate to it while separating. Chromosomes of the homologous pair arrange to face any of the poles to migrate forward to it. Each of the chromosomes has two possibilities for orientation at the plane. When the new haploid cells are formed, the number of variations in each cell is also different and depends on the chromosomes that form that cell. The order in the equatorial plane is what introduces variation into the gametes, being almost impossible for two gametes to have the same genetic charge.
Independent assortment occurs when the alleles from two or more different genes distribute in gametes independently from each other. In other words, a gamete receives an allele from a gene that does not depend on nor influence the allele of another gene in the same gamete. This can only be applied to independent genes. An organism gets only one of the members of the chromatids pair of each parent.
I think the loop of henle is your answer
Answer:
The genetic information of living organisms is sequenced in DNA, which allows inheritable factors to be transmitted with each replication process. Proteins play a very important role by intervening in their metabolism during the translation and transcription of information. .
eukaryotic and prokaryotic organisms have different evolutionary sequelae that are reflected in the mechanisms they use for DNA translation, such as in the initial stages, lengthening and termination of sequencing, these differences are imparted by the order of the genes, the ribosome and its structural form and the promoter sequences.
In this way we can conclude that although the eukaryotic genes enter into a bacterium, the type of information that they take may arrive incomplete and this may generate subsequent defects for their operation, but there may be processes that guarantee a better transfer of information with the use of genetic engineering and enzyme management to introduce different bacterial genetic expressions with eukaryotic genes.
I believe it is B. Hope this helps!!
* Channel proteins- these are proteins with a hydrophilic pore where specific ions are able to pass through the membrane. Each channel protein is specific to an ion. This is the only way ions can travel through the membrane. They are trans membrane proteins.
* Carrier proteins- these are proteins which allow larger or polar molecules through the membrane. They are trans membrane proteins.
Carrier proteins essentially “carry" signals that are not soluble in aqueous solution through the blood stream to their target cells. Carrier proteins for hydrophilic signals prevent degradation of the signal. Channel proteins are embedded in cell membranes. They often are receptors (though not always), and when activated, allow specific ions to pass through the membrane.
A channel protein is a special arrangement of amino acids which embeds in the cell membrane, providing a hydrophilic passageway for water and small, polar ions. Like all transport proteins, each channel protein has a size and shape which excludes all but the most specific molecules
The carrier protein facilitate diffusion of molecules across the cell membrane. The protein is imbedded in the cell membrane and covers the entire membrane. This is important because the carrier must transport the molecule in and out of the cell.