1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
12

Elapsed time in minutes Start time 6:00 pm End time 7:15pm

Mathematics
1 answer:
Levart [38]3 years ago
3 0
75 minutes have passed
You might be interested in
If f(x)=4^x-8 and g(x)=5x+6 find (f+g)(x) ANSWER ASAP PLS
liraira [26]
<h3>Answer: 4^x+5x-2</h3>

Add up the equations and combine any like terms. In this case, the like terms are -8 and +6 which combine to -2. Everything else is unlike terms so you leave them as is.

f(x) + g(x) = (4^x-8) + (5x+6)

f(x) + g(x) = 4^x + 5x + (-8+6)

f(x) + g(x) = 4^x + 5x - 2

4 0
4 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Order -12,|-25|,-10,18,<br> |29|,and 5 from greatest to least <br> It's a little more difficult
yanalaym [24]
29, 18, 5, -10, -12, -25

Hope this helped :)
6 0
3 years ago
Read 2 more answers
The following question has two parts. First, answer part A. Then, answer part B. Part A "If you share 7 apples equally with 3 pe
Marrrta [24]

There are 2 1/3 apples for each person.

The whole number 2 is the number of whole apples each person gets.  The numerator 1 is the number of pieces of the remaining apple each person gets; the denominator 3 is the number of pieces the remaining apple is cut into.'

You and three friends buy a pizza with 8 slices to share. Each friend gets 2 slices each because 1 divided by 1/4 is 25% and 25% of that pizza is 2 slices

5 0
3 years ago
Read 2 more answers
10u^2 - 4u + 3 for u = 7
Alika [10]

Answer:

L(x)=136x−487

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • Simplify (x^2 y^3) (x^4 y^2)<br> a. X^6y^5<br> b. x^8y^6<br> c. 2x^8y^6<br> d. 2x^6y^5
    7·1 answer
  • Solving for a variable 3-2(2x-3)=17
    11·1 answer
  • Why it is not possible for two lines to be parallel and perpendicular?
    8·1 answer
  • *HELP!!!!!*
    15·1 answer
  • What is the image point of (-4, 2) after a translation left 1 unit and down 2 units?
    10·1 answer
  • I need help fast will give brainless
    15·2 answers
  • Of three consecutive odd integers, k is the middle one. If the difference between
    6·1 answer
  • What is the value of 3g(-1)?​
    7·1 answer
  • Help help help math math help
    11·2 answers
  • A‌ ‌drink‌ ‌recipe‌ ‌calls‌ ‌for‌ ‌papaya‌ ‌juice‌ ‌and‌ ‌water.‌ ‌This‌ ‌equation‌ ‌represents‌ ‌the‌ ‌proportional‌ ‌relations
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!