Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
Answer:
They are congruent by SAS
Step-by-step explanation:
MQ=PN
The angles with markings also go together
The line right in the middle is the second side because of the reflexive property
Answer:
a 4x + 10 i think
Step-by-step explanation:
Answer: 1/20
To find P(Q and R), you have to multiply P(Q) by P(R) to get the probability that both events will occur. P(Q) = 1/8, and P(R) = 2/5, so when multiplied together, you get 2/40. This simplifies to 1/20, meaning P(Q and R) = 1/20.
Answer:
b. 58%
Step-by-step explanation:
Calculate the area of the entire rectangle using the formula A = lw.
The lowercase "L" is for length.
"w" is for width.
The lighter square is 10 units long by 5 inches wide.
A = lw
A = (10 in)(5 in) Multiply
A = 50 in²
Calculate the area for the shaded rectangle, 7 inches by 3 inches.
A = lw
A = (7 in)(3 in) Multiply
A = 21 in²
Calculate the area for the non-shaded region by subtracting the shaded area from the total area.
50 in² - 21 in² = 29 in²
The chance that a point in the large rectangle will NOT be in the shaded region is 29/50.
Convert this fraction to decimal form by using a calculator. Divide the top number by the bottom number.
29/50 = 0.58
0.58 is in decimal form. To convert it to a percentage, multiply the number by 100.
0.58 = 58%
Therefore the probability that a point chosen inside the large rectangle is not in the shaded region is 58%.