18xy + 24y = 6y(3x + 8)
The common factor is 6y
11/4% = (11/4)/100 = 11/400 = 0.0275;
1/4 = 0.2500;
1/80 = 0.0125;
We observe that 0.0125 < 0.0275 and 0.0114 < 0.0275 and 0.2500 > 0.0275 and 0.12500 > 0.0275;
The answers are c. and d.
None of this because you can't answer 8+ 9 or with can't answer 56 <89
Answer:
D: 101, 135, 131, 99, 138, 136, 140
Step-by-step explanation:
edg2020 (do not get this confused with the question: "which set contains no outliers"
Answer:
51/4
Step-by-step explanation:
To begin with you have to understand what is the distribution of the random variable. If X represents the point where the bus breaks down. That is correct.
X~ Uniform(0,100)
Then the probability mass function is given as follows.

Now, imagine that the D represents the distance from the break down point to the nearest station. Think about this, the first service station is 20 meters away from city A, and the second station is located 70 meters away from city A then the mid point between 20 and 70 is (70+20)/2 = 45 then we can represent D as follows

Now, as we said before X represents the random variable where the bus breaks down, then we form a new random variable
,
is a random variable as well, remember that there is a theorem that says that
![E[Y] = E[D(X)] = \int\limits_{-\infty}^{\infty} D(x) f(x) \,\, dx](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20E%5BD%28X%29%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20D%28x%29%20f%28x%29%20%5C%2C%5C%2C%20dx)
Where
is the probability mass function of X. Using the information of our problem
![E[Y] = \int\limits_{-\infty}^{\infty} D(x)f(x) dx \\= \frac{1}{100} \bigg[ \int\limits_{0}^{20} x dx +\int\limits_{20}^{45} (x-20) dx +\int\limits_{45}^{70} (70-x) dx +\int\limits_{70}^{100} (x-70) dx \bigg]\\= \frac{51}{4} = 12.75](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20%5Cint%5Climits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%20D%28x%29f%28x%29%20dx%20%5C%5C%3D%20%5Cfrac%7B1%7D%7B100%7D%20%5Cbigg%5B%20%5Cint%5Climits_%7B0%7D%5E%7B20%7D%20x%20dx%20%2B%5Cint%5Climits_%7B20%7D%5E%7B45%7D%20%28x-20%29%20dx%20%2B%5Cint%5Climits_%7B45%7D%5E%7B70%7D%20%2870-x%29%20dx%20%2B%5Cint%5Climits_%7B70%7D%5E%7B100%7D%20%28x-70%29%20dx%20%20%5Cbigg%5D%5C%5C%3D%20%5Cfrac%7B51%7D%7B4%7D%20%3D%2012.75)