Answer:
Step-by-step explanation:
Answer:
Algebra is user in business/finance management, software development, coding, landscaping plans, and nearly every form of engineering. The integrity of society requires all sorts of intuitive math, and the device you are typing on as well as the coding of this website relied on it was well.
I am not 100% positive but think it is c
2. Find the derivative of f (x) = 5x + 9 at x = 2.
A) 9
B) 5
C) 0
D) 10<span><span>
</span><span>f (x) = 5x + 9
</span><span>The first thing we should do in this case is to derive the function.
</span><span>We have then:
</span><span>f '(x) = 5
</span><span>We now evaluate the function for the value of x = 2.
</span><span>We have then:
</span><span> f '(2) = 5
</span><span>Answer:
</span><span> the derivative of f (x) = 5x + 9 at x = 2 is:
</span><span>B) 5
</span><span>3. Find the derivative of f (x) = 8 divided by x at x = -1.
</span><span>4
</span><span>0
</span><span>8
</span><span> -8
</span><span>f (x) = 8 / x
</span><span>The first thing we should do in this case is to derive the function.
</span><span>We have then:
</span><span>f '(x) = ((0 * x) - (1 * 8)) / (x ^ 2)
</span><span> Rewriting we have:
</span><span> f '(x) = -8 / (x ^ 2)
</span><span>We now evaluate the function for the value of x = -1.
</span><span> We have then:
</span><span>f '(- 1) = -8 / ((- 1) ^ 2)
</span><span>f '(- 1) = -8
</span><span>Answer:
</span><span>The derivative of f (x) = 8 divided by x at x = -1 is:
</span><span>-8
</span><span> 4. Find the derivative of f (x) = negative 11 divided by x at x = 9.
</span><span> A) 11 divided by 9
</span><span>B) 81 divided by 11
</span><span>C) 9 divided by 11
</span><span> D) 11 divided by 81
</span><span> f (x) = -11 / x
</span><span>The first thing we should do in this case is to derive the function.
</span><span> We have then:
</span><span>f '(x) = ((0 * x) - (1 * (- 11))) / (x ^ 2)
</span><span>Rewriting we have:
</span><span> f '(x) = 11 / (x ^ 2)
</span><span>We now evaluate the function for the value of x = 9.
</span><span>We have then:
</span><span> f '(9) = 11 / ((9) ^ 2)
</span><span> f '(9) = 11/81
</span><span>Answer:
</span><span>the derivative of f (x) = negative 11 divided by x at x = 9 is:
</span><span>D) 11 divided by 81
</span><span>5. The position of an object at time is given by s (t) = 3 - 4t. </span><span>Find the instantaneous velocity at t = 8 by finding the derivative.
</span><span>s (t) = 3 - 4t
</span><span>For this case, the first thing we must do is derive the given expression.
</span><span>We have then:
</span><span>s' (t) = - 4
</span><span>We evaluate now for t = 8
</span><span> s' (8) = - 4
</span><span>Answer:
</span><span> the instantaneous velocity at t = 8 by finding the derivative is:
</span><span>s' (8) = - 4</span></span>
54 - 4a^2 + 3b^3 when a = -2 and b = 4 is
54 - 4(-2)^2 + 3(4)^3 = 54 - 4(4) + 3(64) = 54 - 16 + 192 = 230