<span>Defective rate can be expected
to keep an eye on a Poisson distribution. Mean is equal to 800(0.02) = 16,
Variance is 16, and so standard deviation is 4.
X = 800(0.04) = 32, Using normal approximation of the Poisson distribution Z1 =
(32-16)/4 = 4.
P(greater than 4%) = P(Z>4) = 1 – 0.999968 = 0.000032, which implies that
having such a defective rate is extremely unlikely.</span>
<span>If the defective rate in the
random sample is 4 percent then it is very likely that the assembly line
produces more than 2% defective rate now.</span>
The area for 27 is 64cm^2.
For the mean, you add up all the numbers then divide by how many numbers there are. So you would do 45+96+100+39+50 and divide it by 5. So your mean is 66.
Now for 29.
For when n=5 is 8
For when n=8 is 14
For when n=14 is 26
Hope this helps!
Answer: 57.7
Step-by-step explanation:
Answer:
x = - 1 ± 2i
Step-by-step explanation:
we can use the discriminant b² - 4ac to determine the nature of the roots
• If b² - 4ac > , roots are real and distinct
• If b² - 4ac = 0, roots are real and equal
• If b² - ac < 0, roots are not real
for x² + 2x + 5 = 0
with a = 1, b = 2 and c = 5, then
b² - 4ac = 2² - (4 × 1 × 5 ) = 4 - 20 = - 16
since b² - 4ac < 0 there are 2 complex roots
using the quadratic formula to calculate the roots
x = ( - 2 ±
) / 2
= (- 2 ± 4i ) / 2 = - 1 ± 2i