No it is not greater than 5
When ever you are multiply a number by 1/2 you are halving the number. So in the us case 3 x 1/2 is 1.5.
And 1.5 is not greater than 5
So the answer is no
Can you please mark brainleist
Answer:
A. 0.5
B. 0.32
C. 0.75
Step-by-step explanation:
There are
- 28 students in the Spanish class,
- 26 in the French class,
- 16 in the German class,
- 12 students that are in both Spanish and French,
- 4 that are in both Spanish and German,
- 6 that are in both French and German,
- 2 students taking all 3 classes.
So,
- 2 students taking all 3 classes,
- 6 - 2 = 4 students are in French and German, bu are not in Spanish,
- 4 - 2 = 2 students are in Spanish and German, but are not in French,
- 12 - 2 = 10 students are in Spanish and French but are not in German,
- 16 - 2 - 4 - 2 = 8 students are only in German,
- 26 - 2 - 4 - 10 = 10 students are only in French,
- 28 - 2 - 2 - 10 = 14 students are only in Spanish.
In total, there are
2 + 4 + 2 + 10 + 8 + 10 +14 = 50 students.
The classes are open to any of the 100 students in the school, so
100 - 50 = 50 students are not in any of the languages classes.
A. If a student is chosen randomly, the probability that he or she is not in any of the language classes is

B. If a student is chosen randomly, the probability that he or she is taking exactly one language class is

C. If 2 students are chosen randomly, the probability that both are not taking any language classes is

So, the probability that at least 1 is taking a language class is

Answer:
A bag of chips costs $1
A pickle costs $1.25
Step-by-step explanation:
P + 2c = 3.25 Start with these two equations
3p + 4c = 7.25
p = -2c + 3.25 Solve for one variable
3(-2c +3.25) + 4c = 7.25 Substitute
-6c + 9.75 + 4c = 7.25
-2c = -2
c = 1
p + 2(1) = 3.25 Substitute
p + 2 = 3.25
p = 1.25
18+21=39
33+49=82
Just add them together
The given equation is: 
To find the line perpendicular to it, we interchange coefficients and switch the signs of one coefficient.
The equation to a line perpendicular to it is:
$ 2y-x=c$
where, $c$ is some constant we have determine using the condition given.
It passes through $(2,-1)$
Put the point in our equation:
$2(-1)-(2)=c$
$c=-2-2$
$c=-4$
The final equation is:
$\boxed{ 2y-x=-4}$