1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna71 [15]
3 years ago
14

The level of nitrogen oxides (NOX) in a exhaust of cars of a particular model varies normally with mean 0.25 grams per miles and

standard deviation 0.05 g/mi. government regulations call for NOX emissions no higher than 0.3 g/mi.
a. What is the probability that a single car of this model fails to meet the NOX requirement?
b. A company has 4 cars of this model in its fleet. What is the probability that the average NOX level of these cars are above 0.3 g/mi limit?
Mathematics
1 answer:
antoniya [11.8K]3 years ago
4 0

Answer:

a) 15.87% probability that a single car of this model fails to meet the NOX requirement.

b) 2.28% probability that the average NOX level of these cars are above 0.3 g/mi limit

Step-by-step explanation:

We use the normal probability distribution and the central limit theorem to solve this question.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem:

The Central Limit Theorem estabilishes that, for a random variable X, with mean \mu and standard deviation \sigma, a large sample size can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}

In this problem, we have that:

\mu = 0.25, \sigma = 0.05

a. What is the probability that a single car of this model fails to meet the NOX requirement?

Emissions higher than 0.3, which is 1 subtracted by the pvalue of Z when X = 0.3. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{0.3 - 0.25}{0.05}

Z = 1

Z = 1 has a pvalue of 0.8417.

1 - 0.8413 = 0.1587.

15.87% probability that a single car of this model fails to meet the NOX requirement.

b. A company has 4 cars of this model in its fleet. What is the probability that the average NOX level of these cars are above 0.3 g/mi limit?

Now we have n = 4, s = \frac{0.05}{\sqrt{4}} = 0.025

The probability is 1 subtracted by the pvalue of Z when X = 0.3. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{0.3 - 0.25}{0.025}

Z = 2

Z = 2 has a pvalue of 0.9772

1 - 0.9772 = 0.0228

2.28% probability that the average NOX level of these cars are above 0.3 g/mi limit

You might be interested in
I need your help guys help me differentiate this question​
Elden [556K]

Answer:

6((4 {x}^{3}  - 5x + 1) ^{ - 4}  + 4 {x}^{10} + 4) ^{5} \times  (- 4(4x ^{3} - 5x + 1)^{ - 5} \times 12 {x}^{2} - 5 ) + 40 {x}^{9}

3 0
3 years ago
Given P(E) = 0.58 and P(FE) =0.32 , find P(F/E). Round the answer to the nearest hundredth.
rusak2 [61]
(D) hope this helps kxjdndldjdkwpwnx
5 0
2 years ago
Read 2 more answers
The first term of a geometric sequence is 1, and the common ratio is 10. What is the 10th term of the sequence?
lys-0071 [83]
T(10)=1(10)^9=1000000000
7 0
3 years ago
1 - (8 to the second power + 6)<br><br> Which do I do first 8+6 the then exponent or Vice versa?
Svet_ta [14]
You would need to do it vice versa
6 0
2 years ago
Read 2 more answers
46 + (-2k) a. for k =3 b.for k = 23 k = -2
mamaluj [8]

9514 1404 393

Answer:

  a.  40

  b.  0

  c.  50

Step-by-step explanation:

a) 46 + (-2k) for k = 3 is ...

  46 + (-2(3)) = 46 -6 = 40

__

b) 46 + (-2k) for k = 23 is ...

  46 + (-2(23)) = 46 -46 = 0

__

c) 46 + (-2k) for k = -2 is ...

  46 + (-2(-2)) = 46 +4 = 50

3 0
2 years ago
Other questions:
  • Deborah bought a yard of ribbon for $14.76. How much did Deborah pay per inch? (1 yard = 3 fee
    14·1 answer
  • Respond quickly!!!!!!!!!!!
    13·1 answer
  • Perpendicular to the line -2x+y=1; contains the point (-2,-4); what is the equation of the line?
    9·1 answer
  • How do you solve for x in m=2(x n)?
    5·1 answer
  • The length of a solar car race track is supposed to be 4.8 meters.
    11·1 answer
  • 3) A cookie recipe calls for 9 cups of flour for 4
    12·1 answer
  • The frederick County Fair costs $15.50 to get in and $2.50 pre ride, while the Montgomery County Fair costs $10.00 to get in and
    10·1 answer
  • 4 + {−5 + [−3 + 4 + 2(−7 + 4) + 4] + 2}
    8·1 answer
  • What type of angles are these?
    9·1 answer
  • -<br> The midpoint of AB = ([?],[ ])<br> M = (x1+x2Yiy2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!