Answer:
centre of the circle(h,k)=(5,2)
radius(r)=10
Step-by-step explanation:
Now,
equation of the circle is giveb by (x-h)^2+(y-k)^2=r^2
or,(x-5)^2+(y-2)^2=(10)^2
or,x^2-10x+25+y^2-4y+4=100
or,x^2+y^2-10x-4y+29-100=0
or,x^2+y^2-10x-4y-71=0
Evaluate <span><span>cos<span>(10)</span></span><span>cos10</span></span> to get <span>0.984807750.98480775</span>.<span><span><span>0.98480775<span>cos<span>(80)</span></span></span><span><span>−<span>sin<span>(10)</span></span></span><span>sin<span>(80)</span></span></span></span><span><span>0.98480775<span>cos80</span></span><span><span>-<span>sin10</span></span><span>sin80</span></span></span></span>Evaluate <span><span>cos<span>(80)</span></span><span>cos80</span></span> to get <span>0.173648170.17364817</span>.<span><span><span>0.98480775⋅0.17364817</span><span><span>−<span>sin<span>(10)</span></span></span><span>sin<span>(80)</span></span></span></span><span><span>0.98480775⋅0.17364817</span><span><span>-<span>sin10</span></span><span>sin80</span></span></span></span>Multiply <span>0.984807750.98480775</span> by <span>0.173648170.17364817</span> to get <span>0.171010070.17101007</span>.<span><span>0.17101007<span><span>−<span>sin<span>(10)</span></span></span><span>sin<span>(80)</span></span></span></span><span>0.17101007<span><span>-<span>sin10</span></span><span>sin80</span></span></span></span>Evaluate <span><span>sin<span>(10)</span></span><span>sin10</span></span> to get <span>0.173648170.17364817</span>.<span><span>0.17101007<span><span><span>−1</span>⋅0.17364817</span><span>sin<span>(80)</span></span></span></span><span>0.17101007<span><span><span>-1</span>⋅0.17364817</span><span>sin80</span></span></span></span>Multiply <span><span>−1</span><span>-1</span></span> by <span>0.173648170.17364817</span> to get <span><span>−0.17364817</span><span>-0.17364817</span></span>.<span><span>0.17101007<span><span>−0.17364817</span><span>sin<span>(80)</span></span></span></span><span>0.17101007<span><span>-0.17364817</span><span>sin80</span></span></span></span>Evaluate <span><span>sin<span>(80)</span></span><span>sin80</span></span> to get <span>0.984807750.98480775</span>.<span><span>0.17101007<span><span>−0.17364817</span>⋅0.98480775</span></span><span>0.17101007<span><span>-0.17364817</span>⋅0.98480775</span></span></span>Multiply <span><span>−0.17364817</span><span>-0.17364817</span></span> by <span>0.984807750.98480775</span> to get <span><span>−0.17101007</span><span>-0.17101007</span></span>.<span><span>0.17101007<span>−0.17101007</span></span><span>0.17101007<span>-0.17101007</span></span></span>Subtract <span>0.171010070.17101007</span> from <span>0.171010070.17101007</span> to get <span>0</span>.0
Answer:
To find the maximum of a function in ax^2 + bx + c form, you can use the formula: maximum = c - (b^2 / 4a).
In this question, a = -16, b = 180, and c = 63.
Maximum = 63 - (180^2/4(-16))
Maximum = 569.25
Finally, rounding this to the nearest tenth of a foot, the final answer is 569.3 ft.
Let me know if this helps!
The ratio of 3/20 is 3:20
It is the center point of graph possitive and negative.