1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
10

Evaluate the line integral, where C is the given curve. C sin(x) dx + cos(y) dy, where C consists of the top half of the circle

x2 + y2 = 16 from (4, 0) to (−4, 0) and the line segment from (−4, 0) to (−5, 4)
Mathematics
1 answer:
kenny6666 [7]3 years ago
7 0

Parameterize the circular part of C (call it C_1) by

x=4\cos t

y=4\sin t

wih 0\le t\le\pi, and the linear part (call it C_2) by

x=-4-t

y=4t

with 0\le t\le1.

Then

\displaystyle\int_C\sin x\,\mathrm dx+\cos y\,\mathrm dy=\left\{\int_{C_1}+\int_{C_2}\right\}\sin x\,\mathrm dx+\cos y\,\mathrm dy

=\displaystyle\int_0^\pi(-4\sin t\sin(4\cos t)+4\cos t\cos(4\sin t))\,\mathrm dt+\int_0^1(-\sin(-4-t)+\cos4t)\,\mathrm dt

=0+\displaystyle\int_0^1(\sin(t+4)+\cos4t)\,\mathrm dt

=\cos4-\cos5+\dfrac{\sin4}4

You might be interested in
Can you help me with this question please? I will reward 20 points for best answer.
swat32

Answer:

Demand: q = -50p + 1200

Supply: q = 40p

Step-by-step explanation:

First let's define our variables.

q = quantity of T-shirts

p = price

We know that when p = 12, q = 600.  When p increases by 1, q decreases by 50.  So this is a line with slope -50 that passes through the point (12, 600).  Using point-slope form to write the equation:

q - 600 = -50 (p - 12)

Converting to slope-intercept form:

q - 600 = -50p + 600

q = -50p + 1200

Similarly, we know that when p = 9.75, q = 600 - 210 = 390.  When p increases by 1, q increases by 40.  So this is a line with slope 40 that passes through the point (9.75, 390).  Using point-slope form to write the equation:

q - 390 = 40 (p - 9.75)

Converting to slope-intercept form:

q - 390 = 40p - 390

q = 40p

5 0
2 years ago
If h = 8 units and r = 2 units, then what is the approximate volume of the cone
Mumz [18]
V=π * r^2 * h/3 = π * 2^2 * 8/3 ≈ 33.51032 or about 34 units^2
8 0
3 years ago
Read 2 more answers
Need an answer quickly. Left my book at my friends house.​
forsale [732]

Answer:

A. 3

B. 3/4

C. 1/4

Step-by-step explanation:

1/4 of 12 is 3

3 plus 6 is 9 and 9 is 3/4 of 12

12 minus nine is also three leaving the tank still a 1/4 tank empty

4 0
3 years ago
HELP NOW PLEASE I WILL GIVE BRAINLIEST IT'S URGENT!!!!!!
Degger [83]

Answer:

24

Step-by-step explanation:

y= 24-4x

8 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • In a diagram, KN =4, JN = 20, LN = 10 AND MN = x. Find ML.
    7·1 answer
  • What percent of 90 is 22.5?
    5·2 answers
  • Please help me! and can you show step by step please!
    11·1 answer
  • 2(x-2)^2+3 and 3(x+1)^2+5 rewrite in standard form
    13·1 answer
  • Consider the hypothetical study described below. Based solely on the information​ given, do you have reason to question the resu
    7·1 answer
  • A jewelry box contains two gold hoop earrings and two silver hoop earrings. You randomly choose two earrings. What is the probab
    12·2 answers
  • Trampoline Park has an admission fee, plus an hourly fee of $4.50. What is the initial value?
    10·1 answer
  • Someone pls help pls
    15·1 answer
  • A bowling ball has a diameter of 8.5 inches. If it is rolled down a 60 foot bowling lane, how many complete revolutions will it
    8·1 answer
  • I Need Help! Please!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!