<span>Y = 2x + 4
16x + 4y = 40
substitute </span>Y = 2x + 4 into <span>16x + 4y = 40
</span><span>16x + 4y = 40
</span>16x + 4(2x + 4) = 40
16x + 8x + 16 = 40
24x = 40 - 16
24x = 24
x = 1
Y = 2x + 4
Y = 2(1) + 4
Y = 6
answer (1, 6)
Answer:
the probability that five randomly selected students will have a mean score that is greater than the mean achieved by the students = 0.0096
Step-by-step explanation:
From the five randomly selected students ; 160, 175, 163, 149, 153
mean average of the students = 160+175+163+149+153/5
= mean = x-bar = 800/5
mean x-bar = 160
from probability distribution, P(x-bar > 160) = P[ x-bar - miu / SD > 160 -150.8 /3.94]
P( Z>2.34) = from normal Z-distribution table
= 0.0096419
= 0.0096
hence the probability that five randomly selected students will have a mean score that is greater than the mean achieved by the students = 0.0096
where SD = standard deviation = 3.94 and Miu = 150.8
Before we start answering the question, let's define the compound interest formula:
Where:
<span>'A'</span> is the amount of money in dollars
'P' is the principal amount of money in dollars
'r' is the interest rate (decimal)
'n' is the number of times interest is compounded per year
't' is the time in years
<span>
(A) Find Principal Amount</span><u /><span><u>Given:</u>
</span>A = 12,000
P = ?
r = 0.08
n = 2 (semiannually)
t = 5
Now we plug our values in and solve:



∴ You would have to deposit $8106.77 in order to have $12,000 in 5 years from now.
(B) Find Principal AmountSame given values as above, with the exception of 't' which is now 10 instead of 5.



∴ You would have to deposit $5476.64 in order to have $12,000 in 10 years from now.
Hope this helps!
A^2+b^2=c^2 so 4(4) +3(3) is 16+9= 25 and the square root of that is 5.