Proof by induction
Base case:
n=1: 1*2*3=6 is obviously divisible by six.
Assumption: For every n>1 n(n+1)(n+2) is divisible by 6.
For n+1:
(n+1)(n+2)(n+3)=
(n(n+1)(n+2)+3(n+1)(n+2))
We have assumed that n(n+1)(n+2) is divisble by 6.
We now only need to prove that 3(n+1)(n+2) is divisible by 6.
If 3(n+1)(n+2) is divisible by 6, then (n+1)(n+2) must be divisible by 2.
The "cool" part about this proof.
Since n is a natural number greater than 1 we can say the following:
If n is an odd number, then n+1 is even, then n+1 is divisible by 2 thus (n+1)(n+2) is divisible by 2,so we have proved what we wanted.
If n is an even number" then n+2 is even, then n+1 is divisible by 2 thus (n+1)(n+2) is divisible by 2,so we have proved what we wanted.
Therefore by using the method of mathematical induction we proved that for every natural number n, n(n+1)(n+2) is divisible by 6. QED.
Answer:
the answer is D
......
Step-by-step explanation:
.....
175.68 divided 4 is 43.92 because
175.68
-16
15
-12
36
-36
08
-8
0
If there are

groups of people, each consisting of 4 people, then there is a total of

people. Including the 8 employees, you have a grand total of

people attending the screening. There has to be less than 80 people allowed in, so the appropriate inequality would be